DF Effluent Characterization Summary

- 1. **Process.** The Field Deployable Hydrolysis System (FDHS) mixes DF with water at a ratio of 1:5 (DF:water). The primary hydrolysis products of the DF:Water reaction are Methylphosphonic Acid (MPA; CAS 993-13-5) and Hydrogen Fluoride (HF; CAS7681-49-4). The resulting acidic solution is transferred out of the FDHS into a hastelloy container where it is tritrated to a pH of approximately 7 using 25% NaOH(aq). As a result of the pH adjustment using NaOH(aq), the HF is neutralized to Sodium Fluoride (NaF; 7681-49-4) and the MPA is neutralized to its mono- or disodium salt in aqueous solution.
- 2. **Hazard Identification.** Example Material Safety Data Sheets for the components are attached:
 - a. DF
 - b. 25 % NaOH
 - c. MPA
 - d. HF
 - e. NaF

3. DF Effluent Characterization Summary Table

PARAMETER	PARAMETER RESULTS		
pH EPA Method 9040			
рН	6.60		
Me	ercury EPA Method 7470A (µg	/L)	
Hg	1.4	0.20	
M	etals EPA Method 200.2 (mg/	L)	
Barium	0.17	0.020	
Chromium	1.6	0.040	
Silver	0.082	0.020	
Total Org	anic Carbon EPA Method 415	5.3 (mg/L)	
TOC	15,000	500	
Total Diss	olved Solids EPA Method 254	0C (mg/L)	
TDS	220,000	1000	
Total Susp	ended Solids EPA Method 254	40D (mg/L)	
TSS	2,700	100	
S	emi-Volitiles EPA Method 827	0	
All analyte/elements were not detected at or above the limit of quantitation (LOQ)		limit of quantitation (LOQ)	
	Volatiles EPA Method 8260		
All analyte/elements were	e not detected at or above the	limit of quantitation (LOQ)	
Viscosity ECBC Test*(cSt)			
25.0°C	3.63 ±0.12		
35.0°C	2.79 ±0.07		
50.0°C	1.66 ±0.04		
Liquid Density ECBC Test*(g/mL)			
16.0°C	1.2171 ±0.0005		
25.0°C	1.2121 ±0.0002		
35.0°C	1.2062 ±0.0011		

*These data are generated from tests conducted at ECBC Chemical Analysis and Physical Properties Branch. DF hydrolysate was generated specifically for the testing and was neutralized after reaction to a pH of 7. 4. The Edgewood Chemical Biological Center (ECBC), Department of the Army believes that the data contained herein are actual and are the results of the tests conducted by ECBC experts. The data are not to be taken as a warranty or representation for which the Department of the Army or ECBC assumes legal responsibility. They are offered solely for consideration. Any use of this data and information contained in this analysis must be determined by the user to be in accordance with applicable Federal, State, and local laws and regulations.

Section II - Ingredients

Ingredients/Name: DF Percentage by Weight: 100%

Section III - Physical Data

Boiling Point: 99.7 °C

Vapor Pressure (torr): 36 @ 25 °C

Vapor Density (Air=1): 3.4

Solubility: Immediately decomposes with the addition of water

Specific Gravity (H₂0=1): 1.359 @ 25 °C

Freezing/Melting Point: -36.9 °C

Liquid Density (g/ml): 1.3595 @ 25 °C

Volatility (mg/m³): 190,000 @ 25 °C

Viscosity (CENTIPOISE): Not Available

Molecular Weight (g/mol): 100.00

Appearance and Odor: Clear liquid. Pungent, acid like.

Section IV - Fire and Explosion Data

Flashpoint: (Method Used): Nonflammable

Auto ignition Temperature: Not Available

Flammability Limits (% By Volume): Not Available

Extinguishing Media: CO₂ and dry chemical. Avoid use of extinguishing methods that will splash or spread DF.

Unusual Fire & Explosion Hazards: In the presence of water, DF hydrolyzes rapidly to methylphosphonofluoridic acid (MF) and hydrogen fluoride (HF); MF then hydrolyzes slowly to methylphosphonic acid (MPA). These extremely corrosive products (MF & HF) could react with metals to give hydrogen gas, an extreme fire/explosion hazard. Hydrogen fluoride (HF) will also react with and degrade glass and concrete. (Note: HF cannot react with glass to give hydrogen).

Special Fire Fighting Procedures: All persons not engaged in extinguishing the fire should be immediately evacuated from the area. Fires involving DF should be contained to prevent contamination to uncontrolled areas. When responding to a fire alarm in buildings or areas containing agents, fire-fighting personnel should wear full firefighter protective clothing (flame resistant) during chemical agent fire-fighting and fire rescue operations.

DF Page 2 of 7

Respiratory protection is required. Positive pressure, full facepiece, NIOSH-approved self-contained breathing apparatus (SCBA) will be worn where there is danger of oxygen deficiency and when directed by the fire chief or chemical accident/incident (CAI) operations officer. In cases where fire fighters are responding to a chemical accident/incident for rescue/reconnaissance purposes, they will wear appropriate levels of protective clothing (see Section VIII).

Do not breathe fumes. Skin contact with DF must be avoided at all times. Although the fire may destroy most of the DF, care must still betaken to assure the DF or contaminated liquids do not further contaminate other areas or sewers. Contact with the DF liquid or vapor can be fatal.

Section V – Health Hazard Data

Suggested Limit: For occupational exposure, the suggested limit for DF is an 8 hour time weighted average (TWA) of 0.008 mg/m³. To date, the Occupational Safety and Health Administration (OSHA) has not promulgated a PEL for DF, nor have these values been officially adopted as part of a DA special Occupational Safety and Health Standards for DF in accordance with DODI.6055.1.

Routes of Entry: Routes of entry for DF can be through liquid contact with skin, inhalation of airborne vapor and ingestion.

Effects of Overexposure: DF vapors have a pungent odor and may cause severe and painful irritation of the eyes, nose, throat and lungs. Severe acute exposure may cause pulmonary edema, the onset of which could be delayed for several hours. Chronic exposure could presumably lead to fluorosis in extreme cases. Severe skin irritation may also occur as a result of hydrolysis of DF by skin moisture, forming hydrogen fluoride, which may cause second or third degree burns upon short contact with exposed skin surfaces. Oral ingestion of DF may cause severe tissue destruction in the gastrointestinal tract. Effects on the kidney were noted in the rat following exposure to high levels of DF. Long term inhalation exposure, even below levels necessary to produce acute respiratory irritation, may result in chronic upper and lower respiratory effects, probably secondary to chronic low-level inflammation. High overexposure to DF may cause inhibition of cholinesterase activity. DF is not teratogenic in the rat or rabbit by the inhalation route of exposure. Individuals with a history of cardiac or pulmonary conditions should be carefully evaluated before being employed in areas where there is potential exposure to DF. DF was studied in a battery of mutagenicity tests (in vitro mutagenicity tests), and results proved negative in six out of seven tests.

DF presently is not listed as a carcinogen by the International Agency for Research on Cancer (IARC), National Toxicology Program (NTP), Occupational Safety and Health Administration (OSHA), or American Conference of Governmental Industrial Hygienists (ACGIH).

Toxicity Values:

Liquid in eye

ED50 = 0.2 mg/eye - temporary corneal damageED50 = 10 mg/eye - permanent corneal damage

Emergency and First Aid Procedures:

NOTE: Individuals intent on rendering first aid need to take steps for self protection such as donning a protective mask and other protective equipment. Decontaminate the individual as indicated below.

Vapor Exposure: Immediately don a protective mask. Move to a clean air environment and decontaminate by removing all clothing and shampooing or rinsing the hair to prevent vapor off gassing.

Liquid Skin Exposure: Immediately move away from area of contamination and don a protective mask. Wash DF and/or its hydrolysis product (HF) from the skin with copious amounts of water and continue washing until

DF Page 3 of 7

medical help can be obtained. If available, treat burns by soaking in iced Zephiran, Epsom salt or dilute fresh solution of sodium bicarbonate. Magnesium oxide and magnesium sulfate dressing can be used if available. Seek medical attention **Immediately**.

Eye Contact: Immediately move away from the area of contamination and begin flushing eyes, mucous membranes, or open wounds with sterile saline or water. Flush the eyes immediately with sterile saline or water by tilting the head to the side, pulling the eyelids apart with gloved fingers and pouring slowly into the eyes. A Morgan lens may also be used for continuous eye irrigation. Seek medical attention **Immediately**.

Ingestion: Do not induce vomiting. First symptoms are likely to be gastrointestinal. Seek medical attention **Immediately. Do not handle vomited material to avoid further contamination.**

Inhalation: If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Mouth-to-mouth resuscitation should be used when approved mask-bag or oxygen delivery systems are not available. Do not use mouth-to-mouth resuscitation when facial contamination is present. Seek medical attention **Immediately**.

Section VI - Reactivity Data

Stability: Remains stable for at least 20 years when stored in high-density polyethylene containers enclosed in steel.

Incompatibility: Avoid contact with water mist or sprays, glass, concrete, natural rubber, metal, alkaline materials and some organics. Never store DF with alcohols. DF will react with alcohols to form a lethal chemical, such as crude GB.

Decomposition Temperature: Not Available

Rate of Hydrolysis: Virtually instantaneous to produce methylphosphonofluoridic acid (MF) and hydrogen fluoride (HF) which are also toxic. Further hydrolysis is a slow reaction that produces methylphosphonic acid (MPA); MF $t_{1/2} = 162$ days @ pH 7, $t_{1/2} = 90$ days @ pH 4 and $t_{1/2} = 47$ days @ pH 3.

Hazardous Decomposition: Hydrolyzes to give toxic products, MF and HF. Further hydrolysis of MF results in MPA and a second mole of HF. HF may react with some metals and give off hydrogen gas, a potential fire and explosive hazard.

Hazardous Polymerization: Will not occur.

<u>Section VII – Spill, Leak, and Disposal Procedures</u>

Steps To Be Taken In Case Material Is Released or Spilled: Only personnel in full protective clothing will be allowed in an area where DF is spilled (See Section VIII). In case of personnel contamination, see Section V.

Spills on porous surfaces (concrete, wood, plastic, etc.) should be cleaned and neutralized immediately; otherwise, it will be absorbed and become a hazard indefinitely. All spills must be contained, e.g., by covering with vermiculite, diatomaceous earth, clay or fine sand followed by a slurry of powdered limestone, slaked lime, soda ash, or sodium bicarbonate. Scoop up all this material and any contaminated soil or substrate and place in a fully removable head drum with a high density, polyethylene liner and labeled as a corrosive material in accordance with EPA and DOT requirements. Provide adequate ventilation and remove any ignition source. Avoid contact with liquid and leaking vapors (pungent acid-like odor can be detected at very low concentrations). Leaks in DF containers can be visually detected by crystalline deposits near point of leak or by discoloration or blistering of paint near point of leak. Contaminated clothing and shoes should be removed immediately and washed thoroughly with water before reuse.

DF Page 4 of 7

Spills inside a DF production facility must be washed down immediately with copious amounts of water. The DF contaminated water must be disposed IAW local, State and Federal regulations. Adequate ventilation is mandatory to prevent possible build-up of hydrogen caused by the reaction of DF hydrolysis products with metals, etc. Release of DF contaminated water to the sanitary sewer or outside the DF production facility is not permitted.

Waste Disposal Method: DF undergoes hydrolysis upon neutralization to yield sodium fluoride and the sodium salt of methylphosphonic acid. Neutralized DF from routine reaction processes or from spills may be disposed through an EPA/state approved hazardous waste transportation and disposal contractor. However, a RCRA treatment facility permit would be required to operate facilities set up just for DF neutralization. Containers used to contain spills must be properly constructed and labeled in accordance with EPA and DOT requirements. No disposal is permitted through sanitary sewers. Large quantities of spill cleanup residues (including soil or DF contaminated substrate) should be incinerated, only in an EPA (state) permitted hazardous wasted incinerator. Neutralized slurry or any other neutralized DF containing wasted can be disposed of in an EPA approved landfill. The neutralized waste contains a fluoride salt and must be handled accordingly.

Open pit burning or burying of DF or items containing or contaminated with DF in any quantity is prohibited.

Section VIII- Special Protection Information

Respiratory Protection:

Concentration	Respiratory Protective Equipment
$< 0.008 \text{ mg/m}^3$	Escape respirators shall be available when necessary: Any NIOSH approved full face piece respirator with acid gas canister Any NIOSH approved escape SCBA
$> or = 0.008 mg/m^3$ and $< 0.4 mg/m^3$	Any NIOSH approved full face piece respirator with acid gas cartridges or canister. Any NIOSH approved full face piece pressure-demand SCBA. Any NIOSH approved full face piece, positive pressure, supplied air respirator.
> or = 0.4 mg/m ³ And unknown concentrations	Any NIOSH approved Air Supply Line with Full Face Respirator and Auxiliary Self-contained Breathing Apparatus (SCBA), or SCBA.

Ventilation

Local Exhaust: Mandatory. Must be filtered or scrubbed. Air emissions shall meet local, state and federal regulations.

Special: Chemical laboratory hoods will have an average inward face velocity of 100 linear feet per minute (lfpm) +/- 20% with the velocity at any point not deviating from the average face velocity by more than 20%. Existing laboratory hoods will have an inward face velocity of 150 lfpm +/- 20%. Laboratory hoods will be located such that cross drafts do not exceed 20% of the inward face velocity. A visual performance test using smoke producing devices will be performed in assessing the ability of the hood to contain agent DF.

Other: Recirculation of exhaust air from agent areas is prohibited. No connection between agent area and other areas through the ventilation system is permitted. Emergency backup power is necessary. Hoods should be tested semiannually or after modification or maintenance operations. Operations should be performed 20 centimeters inside hoods.

Protective Gloves: Butyl Rubber, PVC or neoprene gauntlet

Eye Protection: At a minimum, safety glasses with side shields will be worn. For splash hazards use goggles and face shield. Maintain eyewash facilities in work area.

Other Protective Equipment: For laboratory operations, wear lab coats, gloves and have mask readily accessible. Hooded butyl or neoprene chemical-resistant clothing (i.e., overalls and long sleeve jacket; or one or two-piece chemical splash suit) and chemical-resistant boots.

Section IX - Special Precautions

Precautions To Be Taken In Handling and Storing: When handling agents, the buddy system will be incorporated. No smoking, eating, or drinking in areas containing agents is permitted. Containers should be periodically inspected for leaks. Stringent control over all personnel practices must be exercised. Decontaminating equipment will be conveniently located. Exits must be designed to permit rapid evacuation. Chemical showers, eyewash stations, and personal cleanliness facilities must be provided. Wash hands before meals and, as appropriate, shower thoroughly with special attention given to hair, face, neck, and hands using plenty of soap and water before leaving at the end of the workday.

Other Precautions: Store in lead carboys and wax, high density polyethylene bottles or nickel-lined containers in well ventilated areas. Avoid storage in metal containers since HF (DF hydrolysis product) corrodes metals to give explosive hydrogen. Do not use sparking tools around DF tanks and pipes. Under no circumstances should DF be stored with alcohols or alcohol compounds.

Section X - Transportation Data

Proper Shipping Name: Toxic by inhalation liquid, corrosive, n.o.s. (Methylphosphonic Difluoride)

UN ID Number: UN3390

Dot Hazard Class: 6.1, 8, Packaging Group I, Inhalation Hazard Zone B

Dot Label: Poison Inhalation Hazard or Toxic Inhalation Hazard and Corrosive. See 49 CFR 172.400a(a)(3) for exceptions to unit packaging labeling and 173.7(b) for other exceptions when material is transported by Technical Escort Units.

NOTE: "Poison" and "Toxic" are used interchangeably for all markings, labels and placards in continental US transportation. "Toxic" is required for international transportation.

Dot Marking: Toxic by inhalation liquid, corrosive, n.o.s. (Methylphosphonic Difluoride), UN3390, Inhalation Hazard Zone B

Dot Placard: Poison Inhalation Hazard or Toxic Inhalation Hazard

Emergency Accident Precautions and Procedures: See Sections IV, VI, VII and VIII.

Precautions To Be Taken In Transportation: Motor vehicles will be placarded regardless of quantity. Drivers will be given full information regarding shipment and conditions in case of an emergency. Keep from contact with water or moisture; keep away from heat or ignition sources. Shipment of DF must not contain alcohols or alcohol compounds. AR 50-6 deals specifically with the shipment of chemical agents.

The Edgewood Chemical Biological Center (ECBC), Department of the Army believes that the data contained

DF Page 6 of 7

herein are actual and are the results of the tests conducted by ECBC experts. The data is not to be taken as a warranty or representation for which the Department of the Army or ECBC assumes legal responsibility. This information is offered solely for consideration. Any use of this data and information contained in this MSDS must be determined by the user to be in accordance with applicable Federal, State, and local laws and regulations.

FOUO

He alth2Fire0Reactivity0Personal
Protection

Material Safety Data Sheet Sodium Hydroxide, 25% MSDS

Section 1: Chemical Product and Company Identification Product Name: Sodium Hydroxide, 25% **Contact Information:** Sciencelab.com, Inc. Catalog Codes: SLS4210 14025 Smith Rd. CAS#: Mixture. Houston, Texas 77396 US Sales: 1-800-901-7247 RTECS: Not applicable. International Sales: 1-281-441-4400 TSCA: TSCA 8(b) inventory: Sodium hydroxide; Water Order Online: ScienceLab.com Cl#: Not applicable. CHEMTREC (24HR Emergency Telephone), call: Synonym: 1-800-424-9300 Chemical Name: Not applicable. International CHEMTREC, call: 1-703-527-3887 Chemical Formula: Not applicable. For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Sodium hydroxide	1310-73-2	25
Water	7732-18-5	75

Toxicological Data on Ingredients: Sodium hydroxide LD50: Not available. LC50: Not available.

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of skin contact (corrosive, irritant), of eye contact (irritant), of ingestion. Hazardous in case of inhalation. Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering.

Potential Chronic Health Effects:

Non-corrosive for skin. Non-irritant for skin. Non-sensitizer for skin. Non-permeator by skin. Non-irritating to the eyes. Non-hazardous in case of ingestion. Non-hazardous in case of inhalation. CARCINOGENIC EFFECTS: Not available. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance is toxic to lungs, mucous membranes. Repeated or prolonged exposure to the substance can produce target organs damage. Repeated or prolonged contact with spray mist may produce chronic eye irritation and severe

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Finish by rinsing thoroughly with running water to avoid a possible infection. Cold water may be used.

Skin Contact:

If the chemical got onto the clothed portion of the body, remove the contaminated clothes as quickly as possible, protecting your own hands and body. Place the victim under a deluge shower. If the chemical got on the victim's exposed skin, such as the hands : Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. Be particularly careful to clean folds, crevices, creases and groin. Cold water may be used. If irritation persists, seek medical attention. Wash contaminated clothing before reusing.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek medical attention.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation:

Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, infectious or corrosive. Seek immediate medical attention.

Ingestion:

Do not induce vomiting. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Non-flammable.

Auto-Ignition Temperature: Not applicable.

Flash Points: Not applicable.

Flammable Limits: Not applicable.

Products of Combustion: Not available.

Fire Hazards in Presence of Various Substances: Not applicable.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions: Not applicable.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

FOUO

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. If necessary: Neutralize the residue with a dilute solution of acetic acid.

Large Spill:

Corrosive liquid. Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not get water inside container. Do not touch spilled material. Use water spray curtain to divert vapor drift. Prevent entry into sewers, basements or confined areas; dike if needed. Call for assistance on disposal. Neutralize the residue with a dilute solution of acetic acid. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep container dry. Do not breathe gas/fumes/ vapour/spray. Never add water to this product In case of insufficient ventilation, wear suitable respiratory equipment If you feel unwell, seek medical attention and show the label when possible. Avoid contact with skin and eyes Keep away from incompatibles such as acids.

Storage:

Alkalis may be stored in heavy duty gauge steel containers. Corrosive materials should be stored in a separate safety storage cabinet or room.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

Personal Protection:

Face shield. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves. Boots.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

Sodium hydroxide CEIL: 2 (mg/m3) from ACGIH [1995] Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid.

Odor: Odorless.

Taste: Alkaline. Bitter. (Strong.)

Molecular Weight: Not applicable.

Color: Clear Colorless.

pH (1% soln/water): Basic.

Boiling Point: The lowest known value is 100°C (212°F) (Water).

Melting Point: Not available.

Critical Temperature: Not available.

Specific Gravity: Weighted average: 1.15 (Water = 1)

Vapor Pressure: The highest known value is 17.535 mm of Hg (@ 20°C) (Water).

DRAFT- DF Effluent Characterization Summary FOUO Vapor Density: The highest known value is 0.62 (Air = 1) (Water).

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

lonicity (in Water): Not available.

Dispersion Properties: See solubility in water.

Solubility: Easily soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Extremely reactive or incompatible with acids.

Corrosivity:

Highly corrosive in presence of aluminum. Slightly corrosive to corrosive in presence of glass.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Not available.

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Eye contact. Inhalation. Ingestion.

Toxicity to Animals:

LD50: Not available. LC50: Not available.

Chronic Effects on Humans: The substance is toxic to lungs, mucous membranes.

Other Toxic Effects on Humans:

Very hazardous in case of skin contact (corrosive, irritant), of ingestion. Hazardous in case of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not toxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification: CLASS 8: Corrosive liquid.

Identification: : Sodium hydroxide, solution (Sodium hydroxide) : UN1824 PG: II

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

Pennsylvania RTK: Sodium hydroxide Massachusetts RTK: Sodium hydroxide TSCA 8(b) inventory: Sodium hydroxide; Water

Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

Other Classifications:

WHMIS (Canada):

CLASS D-2A: Material causing other toxic effects (VERY TOXIC). CLASS E: Corrosive liquid.

DSCL (EEC): R35- Causes severe burns.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 0

Reactivity: 0

Personal Protection:

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 0

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Face shield.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 12:05 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume

DRAFT- DF Effluent Characterization Summary

FOUO 11 Dec 2013 no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

SIGMA-ALDRICH

sigma-aldrich.com Material Safety Data Sheet

Version 5.1 Revision Date 12/04/2013 Print Date 12/06/2013

1. PRODUCT AND COMPANY IDENTIFICATION			
Product name	:	Methylphosphonic acid	
Product Number Brand	:	289868 Aldrich	
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA	
Telephone	:	+1 800-325-5832	
Fax	:	+1 800-325-5052	
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555	
Preparation Information	:	Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956	

2. HAZARDS IDENTIFICATION

Emergency Overview

OSHA Hazards

Harmful by ingestion., Corrosive

GHS Classification

Acute toxicity, Oral (Category 4) Skin corrosion (Category 1B) Serious eye damage (Category 1)

GHS Label elements, including precautionary statements

Pictogram

Signal word

Danger

8	5
Hazard statement(s) H302 H314	Harmful if swallowed. Causes severe skin burns and eye damage.
Precautionary statement(s) P280 P305 + P351 + P338	Wear protective gloves/ protective clothing/ eye protection/ face protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if
P310	Immediately call a POISON CENTER or doctor/ physician.
HMIS Classification Health hazard: Flammability:	3 0
Physical hazards:	0
NFPA Rating	
Health hazard:	3
Fire:	0
Reactivity Hazard:	0

FOUO

Potential Health Effects

Inhalation	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous membranes and upper respiratory tract.
Skin	Harmful if absorbed through skin. Causes skin burns.
Eyes	Causes eye burns.
Ingestion	Harmful if swallowed.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Formula Molecular Weight	: CH ₅ O ₃ P : 96.02 g/mol	
Component		Concentration
Methylphosphonic acid	d	
CAS-No.	993-13-5	<= 100 %
EC-No.	213-607-2	

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician. Continue rinsing eyes during transport to hospital.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Special protective equipment for firefighters

Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Oxides of phosphorus

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust.

Environmental precautions

Do not let product enter drains.

Methods and materials for containment and cleaning up

Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Provide appropriate exhaust ventilation at places where dust is formed. Normal measures for preventive fire protection. Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Contains no substances with occupational exposure limit values.

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

Splash contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374 If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Eye protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

••	
Form	solid
Colour	white
Safety data	
рН	no data available
Melting point/freezing point	Melting point/range: 105 - 107 °C (221 - 225 °F) - lit.
Boiling point	no data available
Flash point	not applicable

DRAFT- DF Effluent Characterization Summary		
Ignition temperature	no data available	
Auto-ignition temperature	no data available	
Lower explosion limit	no data available	
Upper explosion limit	no data available	
Vapour pressure	no data available	
Density	no data available	
Water solubility	no data available	
Partition coefficient: n-octanol/water	no data available	
Relative vapour density	no data available	
Odour	no data available	
Odour Threshold	no data available	
Evapouration rate	no data available	

10. STABILITY AND REACTIVITY

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions no data available

Conditions to avoid no data available

Materials to avoid Strong oxidizing agents, Strong bases

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Oxides of phosphorus Other decomposition products - no data available

FOUO

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 no data available

Inhalation LC50 no data available

Dermal LD50 no data available

Other information on acute toxicity no data available

Skin corrosion/irritation no data available

Serious eye damage/eye irritation no data available

Respiratory or skin sensitisation no data available

Germ cell mutagenicity no data available

11 Dec 2013

Carcinogenicity

- IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System) no data available

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard no data available

Potential health effects

Inhalation	May be harmful if inhaled. Material is extremely destructive to the tissue of the mucous membranes and upper respiratory tract.
Ingestion	Harmful if swallowed.
Skin	Harmful if absorbed through skin. Causes skin burns.
Eyes	Causes eye burns.

Signs and Symptoms of Exposure

Cough, Shortness of breath, Headache, Nausea, Vomiting

Synergistic effects no data available

Additional Information RTECS: Not available

12. ECOLOGICAL INFORMATION

Toxicity

no data available

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil no data available

PBT and vPvB assessment no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 3261 Class: 8 Packing group: II Proper shipping name: Corrosive solid, acidic, organic, n.o.s. (Methylphosphonic acid) Marine pollutant: No Poison Inhalation Hazard: No

IMDG

UN number: 3261 Class: 8 Packing group: II EMS-No: F-A, S-B Proper shipping name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. (Methylphosphonic acid) Marine pollutant: No

ΙΑΤΑ

UN number: 3261 Class: 8 Packing group: II Proper shipping name: Corrosive solid, acidic, organic, n.o.s. (Methylphosphonic acid)

15. REGULATORY INFORMATION

OSHA Hazards

Harmful by ingestion., Corrosive

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Acute Health Hazard

Massachusetts Right To Know Components

No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

Methylphosphonic acid	CAS-No. 993-13-5	Revision Date
New Jersey Right To Know Components		
	CAS-No.	Revision Date
Methylphosphonic acid	993-13-5	

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Further information

Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

SIGMA-ALDRICH

sigma-aldrich.com Material Safety Data Sheet

Version 5.0 Revision Date 09/03/2012 Print Date 10/18/2013

1. PRODUCT AND COMPANY ID	DENT	IFICATION
Product name	:	Hydrogen fluoride
Product Number Brand	:	47582 Sigma-Aldrich
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA
Telephone	:	+1 800-325-5832
Fax	:	+1 800-325-5052
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555
Preparation Information	:	Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956

2. HAZARDS IDENTIFICATION

Emergency Overview

OSHA Hazards

Target Organ Effect, Toxic by inhalation., Highly toxic by ingestion, Highly toxic by skin absorption, Corrosive

Target Organs

Liver, Kidney

GHS Classification

Acute toxicity, Oral (Category 2) Acute toxicity, Inhalation (Category 2) Acute toxicity, Dermal (Category 1) Skin corrosion (Category 1A) Serious eye damage (Category 1)

GHS Label elements, including precautionary statements

Pictogram

Signal word

Danger

Hazard statement(s) H300 + H310 H314 H330	Fatal if swallowed or in contact with skin Causes severe skin burns and eye damage. Fatal if inhaled.
Precautionary statement(s)	
P260	Do not breathe dust/ fume/ gas/ mist/ vapours/ spray.
P264	Wash hands thoroughly after handling.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P284	Wear respiratory protection.
P302 + P350	IF ON SKIN: Gently wash with plenty of soap and water.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER or doctor/ physician.

FOUO

HMIS Classification		
Health hazard:	4	
Chronic Health Hazard:	*	
Flammability:	0	
Physical hazards:	0	
NFPA Rating		
Health hazard:	4	
Fire:	0	
Reactivity Hazard:	0	

Potential Health Effects

Inhalation	Toxic if inhaled. Material is extremely destructive to the tissue of the mucous
	membranes and upper respiratory tract.
Skin	May be fatal if absorbed through skin. Causes skin burns.
Eyes	Causes eye burns. Causes severe eye burns.
Ingestion	May be fatal if swallowed.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms	: Hydrofluoric acid	
Formula Molecular Weight	: HF : 20.01 g/mol	
Component		Concentration
Hydrofluoric acid		
CAS-No.	7664-39-3	-
EC-No.	231-634-8	
Index-No.	009-003-00-1	

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Hydrofluoric (HF) acid burns require immediate and specialized first aid and medical treatment. Symptoms may be delayed up to 24 hours depending on the concentration of HF. After decontamination with water, further damage can occur due to penetration/absorption of the fluoride ion. Treatment should be directed toward binding the fluoride ion as well as the effects of exposure. Skin exposures can be treated with a 2.5% calcium gluconate gel repeated until burning ceases. More serious skin exposures may require subcutaneous calcium gluconate except for digital areas unless the physician is experienced in this technique, due to the potential for tissue injury from increased pressure. Absorption can readily occur through the subungual areas and should be considered when undergoing decontamination. Prevention of absorption of the fluoride ion in cases of ingestion can be obtained by giving milk, chewable calcium carbonate tablets or Milk of Magnesia to conscious victims. Conditions such as hypocalcemia, hypomagnesemia and cardiac arrhythmias should be monitored for, since they can occur after exposure. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Take off contaminated clothing and shoes immediately. Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.Continue rinsing eyes during transport to hospital.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Conditions of flammability

Not flammable or combustible.

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Special protective equipment for firefighters

Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Hydrogen fluoride

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Wear respiratory protection. Avoid breathing vapors, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas.

Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

Methods and materials for containment and cleaning up

Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Light sensitive. Hygroscopic.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control parameters	Basis	
Hydrofluoric acid	7664-39-3	STEL	6 ppm	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000	
		TWA	0.5 ppm	USA. ACGIH Threshold Limit Values (TLV)	
Remarks	Fluorosis Up which there	Fluorosis Upper Respiratory Tract, Lower Respiratory Tract, skin & eye irritation Substances for which there is a Biological Exposure Index or Indices (see BEI® section)			
		С	2 ppm	USA. ACGIH Threshold Limit Values (TLV)	
	Fluorosis Up which there	per Respi is a Biolog	ratory Tract, Lower jical Exposure Inde	r Respiratory Tract, skin & eye irritation Substances for ex or Indices (see BEI® section)	
		TWA	3 ppm	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000	
		TWA	3 ppm	USA. Occupational Exposure Limits (OSHA) - Table Z2	
	Z37.28-1969				
		TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants	
		TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants	
	Varies with c	compound			

Т

	TWA	3 ppm 2.5 mg/m3	USA. NIOSH Recommended Exposure Limits
15 minute ce	iling value		
	С	6 ppm 5 mg/m3	USA. NIOSH Recommended Exposure Limits
15 minute ce	iling value		

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

T

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Tightly fitting safety goggles. Faceshield (8-inch minimum). Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Form	liquid
Colour	colourless
Safety data	
рН	no data available
Melting point/freezing point	no data available
Boiling point	no data available
Flash point	no data available
Ignition temperature	no data available
Autoignition temperature	no data available
Lower explosion limit	no data available
Upper explosion limit	no data available
Vapour pressure	33 hPa (25 mmHg) at 20 °C (68 °F)
Density	1.150 g/cm3
Water solubility	no data available
Partition coefficient: n-octanol/water	no data available
Relative vapour	0.8

density	
Odour	no data available
Odour Threshold	no data available
Evaporation rate	no data available

DRAFT- DF Effluent Characterization Summary

10. STABILITY AND REACTIVITY

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions no data available

Conditions to avoid no data available

Materials to avoid Metals, Alkali metals, Strong bases

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Hydrogen fluoride Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 no data available

Inhalation LC50 LCLO Inhalation - Human - 30 h -

LC50 Inhalation - rat - 1 h -

Remarks: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Eye:Lacrimation. Behavioral:Change in motor activity (specific assay). Gastrointestinal:Changes in structure or function of salivary glands.

LC50 Inhalation - mouse - 1 h -

Remarks: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Eye:Corneal damage. Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Eye:Other. Lungs, Thorax, or Respiration:Dyspnea.

Dermal LD50

no data available

Other information on acute toxicity no data available

Skin corrosion/irritation

no data available

Serious eye damage/eye irritation Eyes - Human - Risk of serious damage to eyes.

Respiratory or skin sensitization no data available

Germ cell mutagenicity

Genotoxicity in vivo - rat - Inhalation Cytogenetic analysis

Carcinogenicity

IARC: 3 - Group 3: Not classifiable as to its carcinogenicity to humans (Hydrofluoric acid)

ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a

DRAFT- DF Effluent Characterization Summary FOUO

carcinogen or potential carcinogen by ACGIH.

- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

Reproductive toxicity - rat - Inhalation

Effects on Fertility: Pre-implantation mortality (e.g., reduction in number of implants per female; total number of implants per corpora lutea). Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants).

Teratogenicity

Developmental Toxicity - rat - Inhalation Effects on Embryo or Fetus: Fetal death.

Specific target organ toxicity - single exposure (Globally Harmonized System) no data available

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard no data available

Potential health effects

Inhalation	Toxic if inhaled. Material is extremely destructive to the tissue of the mucous membranes and upper respiratory tract.
Ingestion	May be fatal if swallowed.
Skin	May be fatal if absorbed through skin. Causes skin burns.
Eyes	Causes eye burns. Causes severe eye burns.

Signs and Symptoms of Exposure

Fluoride ion can reduce serum calcium levels possibly causing fatal hypocalcemia., Material can cause severe burns and blistering which may not be immediately painful or visible. The full extent of tissue damage may not exhibit itself for 12-24 hours after exposure., Material is extremely destructive to tissue of the mucous membranes and upper respiratory tract, eyes, and skin., necrosis of the skin

Synergistic effects no data available

Additional Information **RTECS: Not available**

12. ECOLOGICAL INFORMATION

Toxicity

no data available

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil no data available

PBT and vPvB assessment

no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1052 Class: 8 (6.1) Packing group: I Proper shipping name: Hydrogen fluoride, anhydrous Reportable Quantity (RQ): 100 lbs Marine pollutant: No Poison Inhalation Hazard: Hazard zone C

IMDG

UN number: 1052 Class: 8 (6.1) Packing group: I Proper shipping name: HYDROGEN FLUORIDE, ANHYDROUS Marine pollutant: No EMS-No: F-C, S-U

IATA

UN number: 1052 Class: 8 (6.1) Proper shipping name: Hydrogen fluoride, anhydrous IATA Passenger: Not permitted for transport IATA Cargo: Not permitted for transport

15. REGULATORY INFORMATION

OSHA Hazards

Target Organ Effect, Toxic by inhalation., Highly toxic by ingestion, Highly toxic by skin absorption, Corrosive

SARA 302 Components

The following components are subject to reporting levels established by SARA Title III, Section 302:

	CAS-No.	Revision Date
Hydrofluoric acid	7664-39-3	1993-04-24
SARA 313 Components		0.4.0
The following components are subject to reporting levels established by	/ SARA Litle III, Section	313: Bovision Data
Hydrofluoric acid	7664-39-3	1993-04-24
SARA 311/312 Hazards Acute Health Hazard, Chronic Health Hazard		
Massachusetts Right To Know Components		
Hydrofluoric acid	CAS-No. 7664-39-3	Revision Date 1993-04-24
Pennsylvania Right To Know Components		
Hydrofluoric acid	CAS-No. 7664-39-3	Revision Date 1993-04-24
New Jersey Right To Know Components		
· - ·	CAS-No.	Revision Date
Hydrofluoric acid	7664-39-3	1993-04-24

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Further information

Copyright 2012 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

SIGMA-ALDRICH

sigma-aldrich.com Material Safety Data Sheet

Version 5.1 Revision Date 02/27/2013 Print Date 12/06/2013

1. PRODUCT AND COMPANY II	DENT	IFICATION
Product name	:	Sodium fluoride solution
Product Number Brand	:	919 Sigma
Supplier	:	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA
Telephone	:	+1 800-325-5832
Fax	:	+1 800-325-5052
Emergency Phone # (For both supplier and manufacturer)	:	(314) 776-6555
Preparation Information	:	Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956

2. HAZARDS IDENTIFICATION

Emergency Overview

OSHA Hazards

Target Organ Effect, Highly toxic by ingestion, Irritant

Target Organs

Kidney, Heart, Bone, Nerves., Gastrointestinal tract, Teeth., Damage to the lungs.

GHS Classification

Acute toxicity, Oral (Category 4) Skin irritation (Category 3)

GHS Label elements, including precautionary statements

Pictogram

Signal word

9.9.1	
Hazard statement(s)	
H302	Harmful if swallowed.
H316	Causes mild skin irritation.

Precautionary statement(s)

none

3

Warning

Other hazards

Contact with acids liberates very toxic gas.

HMIS Classification

Health hazard:	3
Chronic Health Hazard:	*
Flammability:	0
Physical hazards:	0
NFPA Rating	

Health hazard:

0 0 FOUO

Fire:	
Reactivity	Hazard:

Potential Health Effects

3. COMPOSITION/INFORMATION ON INGREDIENTS

Formula Molecular Weight	: FNa : 41.99 g/mol		
Component		Classification	Concentration
Sodium fluoride			
CAS-No. EC-No. Index-No.	7681-49-4 231-667-8 009-004-00-7	Acute Tox. 3; Skin Irrit. 2; Eye Irrit. 2; H301, H315, H319, EUH032	1 - 5 %

For the full text of the H-Statements and R-Phrases mentioned in this Section, see Section 16

4. FIRST AID MEASURES

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area. Hydrofluoric (HF) acid burns require immediate and specialized first aid and medical treatment. Symptoms may be delayed up to 24 hours depending on the concentration of HF. After decontamination with water, further damage can occur due to penetration/absorption of the fluoride ion. Treatment should be directed toward binding the fluoride ion as well as the effects of exposure. Skin exposures can be treated with a 2.5% calcium gluconate gel repeated until burning ceases. More serious skin exposures may require subcutaneous calcium gluconate except for digital areas unless the physician is experienced in this technique, due to the potential for tissue injury from increased pressure. Absorption can readily occur through the subungual areas and should be considered when undergoing decontamination. Prevention of absorption of the fluoride ion in cases of ingestion can be obtained by giving milk, chewable calcium carbonate tablets or Milk of Magnesia to conscious victims. Conditions such as hypocalcemia, hypomagnesemia and cardiac arrhythmias should be monitored for, since they can occur after exposure.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Flush eyes with water as a precaution.

If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

5. FIREFIGHTING MEASURES

Conditions of flammability Not flammable or combustible.

Suitable extinguishing media

Dry powder

Special protective equipment for firefighters

Wear self contained breathing apparatus for fire fighting if necessary.

Hazardous combustion products

Hazardous decomposition products formed under fire conditions. - Hydrogen fluoride, Sodium oxides

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

Wear respiratory protection. Avoid breathing vapours, mist or gas. Ensure adequate ventilation.

Environmental precautions

Do not let product enter drains.

Methods and materials for containment and cleaning up

Soak up with inert absorbent material and dispose of as hazardous waste. Do not flush with water. Keep in suitable, closed containers for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Conditions for safe storage

Keep container tightly closed in a dry and well-ventilated place. Never allow product to get in contact with water during storage. Do not store near acids.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Value	Control	Basis
Sodium fluoride	7681-49-4	TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants
		TWA	2.5 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000
		TWA	2.5 mg/m3	USA. ACGIH Threshold Limit Values (TLV)
		TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z2
		TWA	2.5 mg/m3	USA. NIOSH Recommended Exposure Limits
		TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants
Remarks	CAS numbe	r varies w	ith compound	
		TWA	2.5 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z2
	Z37.28-1969)		
		TWA	2.5 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000
		TWA	2.5 mg/m3	USA. ACGIH Threshold Limit Values (TLV)
	Bone damag BEI® sectior	je Fluoros n) Not clas	is Substances for v sifiable as a huma	which there is a Biological Exposure Index or Indices (see an carcinogen varies

Personal protective equipment

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Hand protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Eye protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin and body protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Sa

orm	liquid	
Colour	no data available	
ety data		
Н	no data available	
lelting oint/freezing point	no data available	
Boiling point	no data available	
lash point	no data available	
gnition temperature	no data available	
uto-ignition emperature	no data available	
ower explosion limit	no data available	
Ipper explosion limit	no data available	
apour pressure	no data available	
Density	1.000 g/cm3	
Vater solubility	no data available	
Partition coefficient: -octanol/water	no data available	
elative vapour ensity	no data available	
)dour	no data available	
dour Threshold	no data available	
vapouration rate	no data available	
ensity Odour Odour Threshold	no data available no data available no data available	

10. STABILITY AND REACTIVITY

Chemical stability

Stable under recommended storage conditions.

Possibility of hazardous reactions no data available

Conditions to avoid no data available

Materials to avoid Strong acids

Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Hydrogen fluoride, Sodium oxides Other decomposition products - no data available

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Oral LD50 no data available

Inhalation LC50 no data available

Dermal LD50 no data available

Other information on acute toxicity no data available

Skin corrosion/irritation no data available

Serious eye damage/eye irritation Eyes: no data available

Respiratory or skin sensitisation no data available

Germ cell mutagenicity no data available

Carcinogenicity

- IARC: 3 Group 3: Not classifiable as to its carcinogenicity to humans (Sodium fluoride)
 - 3 Group 3: Not classifiable as to its carcinogenicity to humans (Sodium fluoride)
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

no data available

Teratogenicity

no data available

Specific target organ toxicity - single exposure (Globally Harmonized System) no data available

Specific target organ toxicity - repeated exposure (Globally Harmonized System) no data available

Aspiration hazard no data available

Potential health effects

Inhalation	May be harmful if inhaled. Causes respiratory tract irritation.
Ingestion	May be fatal if swallowed.
Skin	May be harmful if absorbed through skin. Causes skin irritation.
Eyes	Causes eye irritation.

Signs and Symptoms of Exposure

FOUO

Salivation, Nausea, Fluoride ion can reduce serum calcium levels possibly causing fatal hypocalcemia., burning sensation, Cough, wheezing, laryngitis, Shortness of breath, Headache

Synergistic effects no data available

Additional Information RTECS: Not available

12. ECOLOGICAL INFORMATION

Toxicity

no data available

Persistence and degradability no data available

Bioaccumulative potential no data available

Mobility in soil no data available

PBT and vPvB assessment no data available

Other adverse effects

no data available

13. DISPOSAL CONSIDERATIONS

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US) Not dangerous goods

IMDG Not dangerous goods

IATA Not dangerous goods

15. REGULATORY INFORMATION

OSHA Hazards

Target Organ Effect, Highly toxic by ingestion, Irritant

SARA 302 Components

SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Acute Health Hazard, Chronic Health Hazard

Massachusetts Right To Know Components

Revision Date Page 36 of 81 Page 6 of 7
FOUO		11 Dec 2013
	7681-49-4	2007-03-01
	CAS-No. 7732-18-5	Revision Date
	7681-49-4	2007-03-01
	CAS-No. 7732-18-5	Revision Date
	7681-49-4	2007-03-01
	FOUO	FOUO 7681-49-4 CAS-No. 7732-18-5 7681-49-4 CAS-No. 7732-18-5 7681-49-4

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Text of H-code(s) and R-phrase(s) mentioned in Section 3

Acute toxicity
Contact with acids liberates very toxic gas.
Eye irritation
Toxic if swallowed.
Causes skin irritation.
Causes serious eye irritation.
Skin irritation

Further information

Copyright 2013 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

DEPARTMENT OF THE ARMY US ARMY INSTITUTE OF PUBLIC HEALTH 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND MARYLAND 21010-5403

MCHB-IP-L

26 November 2013

MEMORANDUM FOR Edgewood Chemical and Biological Center (/Mr. Steven Norman), Gunpowder, MD 21010

SUBJECT: Laboratory Sciences (LS) Final Analytical Report

1. This is LS Final Analytical Report for:

Project Site:	ECBC DEMIL EFFLUENTS
Funding:	
LS Work Order #:	9399
Report Serial #:	53010

2. Please contact us if this report or any of our services did not meet your needs or expectations.

3. Point of contact for additional information is Mr. David F. Morrow,

DSN 584-2208 or commercial 410-436-2208.

CRAIG MISER Chief, Laboratory Analytical Division - Inorganic

The information contained in this document and any attachments is FOUO and is intended for the addressee only. Reading, copying, disclosure or use by anyone else is unauthorized. If you are not the intended recipient, please destroy this document and any attachments and advise the sender immediately by calling 410-436-2208/DSN 584-2208.

SAMPLE SUMMARY

Workorder: 9399 ECBC DEMIL EFFLUENTS

All samples were inspected and observed to conform to our receipt policies, except as noted.

Lab ID	Sample ID	Matrix	Date Collected	Date Received Cancel Code
93990001	12-0026-73	Water (Miscellaneous)	11/19/2013	11/19/2013
93990002	VOC BLANK	Water (Miscellaneous)	11/19/2013	11/19/2013

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
93990001	12-0026-73	EPA 5030B	VSV/2860	EPA 8260B	VSV/2863
93990002	VOC BLANK	EPA 5030B	VSV/2860	EPA 8260B	VSV/2863
93990001	12-0026-73	EPA 3510C	VSV/2864	EPA 8270C	VSV/2865
93990001	12-0026-73	EPA 200.2 Prep	MET/6073	EPA 200.7	MET/6079
93990001	12-0026-73	EPA 7470A	MET/6074	EPA 7470A	MET/6075
93990001	12-0026-73	EPA 415.3	SPC/5331	EPA 415.3	SPC/5334

PROJECT SUMMARY

Workorder: 9399 ECBC DEMIL EFFLUENTS

Workorder Comments

The sample receipt temperatures were 12 degrees C (Metals and SVOC analysis) and 15 degrees C (VOC, TOC, and pH/TSS/TDS analysis). However, the samples were delivered to the laboratory soon after collection. The sample cooling process was initiated in the field, and the samples were refrigerated upon receipt at the laboratory.

Batch Comments

Batch: SPC/5334 - EPA 415.3 Water

The instrument response for TOC in the Continuing Calibration Verification (CCV) standard was below the lower QC limit, which may indicate a negative bias for this analyte. The associated LCS/LCSD were both within QC limits therefore, there should be little or no impact on data usability.

Procedure Comments

Lab ID: 93990001 Sample ID: 12-0026-73 Procedure: EPA 8260

Sample and MS/MSD were analyzed at a 1000:1 dilution factor due to significant interferences associated with the sample matrix. The matrix interference prevented analysis at lower dilution factor. All target analytes are less than the LOQ.

Sample was received at a pH of 7 and contained head space.

The recoveries for trans-1,2-dichloroethene, 1,1,1-trichloroethane, bromodichloromethane, and 1,2-dibromoethane were just below the lower QC limits in the MS and/or MSD, which may indicate a negative bias for these analytes. These deviations are considered minimal and the data usability should not be impacted.

The recovery for the surrogate dibromofluoromethane was just below the lower QC limit of 92.1% in the sample at 91.8%. This deviation is considered minimal and the data usability should not be impacted.

Lab ID: 93990001 Sample ID: 12-0026-73 Procedure: EPA 8270

Due to a matrix interference, only 10 mL of this sample was extracted instead of the standard method volume of 1000 mL. This increased the LOQ for the target analytes by a factor of 100. The matrix interference prevented analysis at a lower dilution factor. The recovery for the surrogate p-Terphenyl-d14 was slightly above the upper QC limit of 117% in the sample at 118%, which may indicate a positive bias for certain base/neutral extractable analytes in the sample. However, no base/neutral extractable analytes were detected in the sample.

Lab ID: 93990001 Sample ID: 12-0026-73 Procedure: EPA 200.7

Due to matrix interference, the LOQs for all elements were increased by a factor of 2.

The recoveries for Arsenic, Selenium and Silver recovered above the upper QC limit in the MS and MSD which may indicate a positive bias for these analytes.

The recovery for Chromium recovered below the lower QC limit in the MS and MSD which may indicate a negative bias for this analyte.

Lab ID: 93990001 Sample ID: 12-0026-73 Procedure: EPA 415.3

The calculated MS for TOC should be considered invalid due to the native concentration of this analytes in the sample being greater than 4 times the amount spiked into the MS

Lab ID: 93990002 Sample ID: VOC BLANK

Procedure: EPA 8260

The recovery for the surrogate dibromofluoromethane was just below the lower QC limit of 92.1% in the sample at 92.0%. This deviation is considered minimal and the data usability should not be impacted.

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990001			Date	Received: 11/19/20	013 Mat	trix: Water (Misce	ellaneou	us)
Sample ID:	12-0026-73			Date	Collected: 11/19/20	013			
Parameters		Results	Uncert Units	LOQ	MDL Date Pre	pared/By	Date Analyzed/By	DF	Qual
ICP Metals									
Analysis Desc	: EPA 200.7		Preparation Metho	d: EPA 200.2 F	rep				
			Analytical Method:	EPA 200.7					
Arsenic		0.40U	mg/L	0.40	0.014 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Barium		0.17	mg/L	0.020	0.0015 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Cadmium		0.020U	mg/L	0.020	0.0016 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Chromium		1.6	mg/L	0.040	0.00085 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Lead		0.20U	mg/L	0.20	0.015 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Selenium		0.40U	mg/L	0.40	0.0087 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Silver		0.082	mg/L	0.020	0.00088 11/21/20 JRB	13 13:19	11/25/2013 00:00 KLH	2	
Semivolatiles	5								
Analysis Desc	: EPA 8270C		Preparation Metho	d: EPA 3510C					
			Analytical Method:	EPA 8270C					
1,2,4-Trichlor	obenzene	1000U	ug/L	. 1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
1,2-Dichlorob	enzene	1000U	ug/L	. 1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
1,3-Dichlorob	enzene	1000U	ug/L	. 1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
1,4-Dichlorob	enzene	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,2'-oxybis(1- Chloropropan	e)	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4,5-Trichloro	ophenol	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4,6-Trichloro	ophenol	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4-Dichloropl	henol	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4-Dimethylp	henol	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4-Dinitrophe	enol	2000U	ug/L	2000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,4-Dinitrotolu	iene	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2,6-Dinitrotolu	iene	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	
2-Chloronaph	thalene	1000U	ug/L	1000	500 11/20/20	13 15:09 JH	11/20/2013 16:49 BGB	1	

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990001				Date R	eceived: 11/19/2013 Ma	trix: Water (Misce	ellaneous)
Sample ID:	12-0026-73				Date C	ollected: 11/19/2013		
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF Qual
2-Chlorophen	ol	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
2-Methyl-4,6- dinitrophenol		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
2-Methylnaph	thalene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
2-Methylphen Cresol}	ol {o-	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
2-Nitroaniline		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
2-Nitrophenol		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
3-Nitroaniline		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
4-Chloro-3- methylphenol		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
4-Chloroanilin	e	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
4-Nitroaniline		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
4-Nitrophenol		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Acenaphthene	e	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Acenaphthyle	ne	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Anthracene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benzo[a]pyrer	ne	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benzo[b]fluora	anthene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benzo[g,h,i]pe	erylene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benzo[k]fluora	anthene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benzyl alcoho	I	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Benz[a]anthra	cene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Bis(2- chloroethoxy)	methane	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Bis(2-chloroet	hyl)ether	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Butylbenzylph	thalate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Chrysene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990001				Date R	Received: 11/19/2013 Ma	trix: Water (Misce	ellaneous)
Sample ID:	12-0026-73				Date C	collected: 11/19/2013		
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF Qual
Di(2- ethylhexyl)pht	halate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Di-n-butylphth	alate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Di-n-octylphth	alate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Dibenzofuran		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Dibenz[a,h]an	thracene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Diethylphthala	ate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Dimethylphtha	alate	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Fluoranthene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Fluorene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Hexachlorobe	nzene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Hexachlorobu	tadiene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Hexachlorocy iene	clopentad	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Hexachloroeth	nane	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Indeno[1,2,3-0	cd]pyrene	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Isophorone		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
m,p-Methylph {m,p-Cresol}	enol	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
N- Nitrosodimeth	vlamine	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
N- Nitrosodiphen	vlamine	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
N-Nitrosodipro	opylamine	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Naphthalene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Nitrobenzene		1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
p-Bromophen ether	yl phenyl	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
p-Chlorophen ether	yl phenyl	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1
Pentachloroph	nenol	1000U		ug/L	1000	500 11/20/2013 15:09 JH	11/20/2013 16:49 BGB	1

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: Sample ID:	93990001 12-0026-73			Date Date	Received: 11/19/2013 Collected: 11/19/2013	Matrix: Water (Misco	ellaneous)
Parameters		Results	Lincert Linits	LOQ	MDL Date Prenared/By	Date Analyzed/By	DF Qual
Phenanthrene	!	1000U	ug/L	1000	500 11/20/2013 15:09	JH 11/20/2013 16:49	1
Phenol		100011	ug/l	1000	500 11/20/2013 15:09	BGB IH 11/20/2013 16:49	1
		10000	ug/L	1000		BGB	
Pyrene		1000U	ug/L	1000	500 11/20/2013 15:09 .	BGB	1
2-Fluorobipher	nyl (S)	94.8	%	65.6-111	11/20/2013 15:09 .	JH 11/20/2013 16:49 BGB	1
2-Fluorophenc	ol (S)	74.7	%	47.9-90.3	11/20/2013 15:09	JH 11/20/2013 16:49 BGB	1
Nitrobenzene-	d5 (S)	96	%	58.5-121	11/20/2013 15:09	JH 11/20/2013 16:49 BGB	1
p-Terphenyl-d	14 (S)	118	%	58.9-117	11/20/2013 15:09	JH 11/20/2013 16:49 BGB	1
Phenol-d5 (S)		42.5	%	33.1-51.8	11/20/2013 15:09	JH 11/20/2013 16:49 BGB	1
2,4,6-Tribromo (S)	ophenol	93.4	%	71.9-121	11/20/2013 15:09 、	JH 11/20/2013 16:49 BGB	1
Volatiles							
Analysis Desc	: EPA 8260B		Preparation Method	I: EPA 5030B			
1112		200011	Analytical Method: E	EPA 8260B	1000 11/19/2013 00:00	11/10/2013 15:32	100
Tetrachloroeth	ane	20000	ug/L	2000	JSS	JSS	0
1,1,1-Trichloro	bethane	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,1,2,2- Tetrachloroeth	ane	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,1,2-Trichloro	bethane	2000U	ug/L	2000	1000 11/19/2013 00:00	11/19/2013 15:32	100
1,1-Dichloroet	hane	2000U	ug/L	2000	1000 11/19/2013 00:00	11/19/2013 15:32	100
1,1-Dichloroet	hene	2000U	ug/L	2000	1000 11/19/2013 00:00	11/19/2013 15:32	100 0
1,1-Dichloropr	opene	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2,3-Trichloro	benzene	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2,3-Trichloro	propane	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2,4-Trichloro	benzene	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2,4- Trimethvlbenz	ene	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2-Dibromo-3 chloropropane	}-	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2-Dibromoet	hane	2000U	ug/L	2000	1000 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0

FOUO

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: Sample ID:	93990001 12-0026-73				Date F Date C	Received: Collected:	11/19/2013 11/19/2013	Matrix: Water (Misce	ellaneous)
Parameters		Results	Uncert	Units	LOQ	MDL	Date Prepared/By	Date Analyzed/By	DF Qual
1,2-Dichlorobe	enzene	2000U		ug/L	2000	1000	11/19/2013 00:00	11/19/2013 15:32	100
1,2-Dichloroet	hane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100 0
1,2-Dichloropr	ropane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100 0
1,3,5- Trimethylbenz	rene	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,3-Dichlorobe	enzene	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,3-Dichloropr	ropane	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,4-Dichlorobe	enzene	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1-Chlorobutan	ie	20000U		ug/L	20000	10000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
2,2-Dichloropr	ropane	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
2-Butanone {N	MEK}	20000U		ug/L	20000	10000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
2-Chlorotoluer	ne	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
2-Hexanone		20000U		ug/L	20000	10000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
2-Nitropropan	e	20000U		ug/L	20000	10000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
4-Chlorotoluer	ne	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
4-Isopropyltolu	uene	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
4-Methyl-2-per	ntanone	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
Acetone		20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
Acrylonitrile		20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Allyl chloride		20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Benzene		2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Bromobenzen	e	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Bromochlorom	nethane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Bromodichloro	omethane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Bromoform		2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990001 12-0026-73				Date F	Received:	11/19/2013 11/19/2013	Matrix: Water (Misce	ellaneous)
Campie ID.	12-0020-75				Duio		11/10/2010		
Parameters		Results	Uncert	Units	LOQ	MDL	. Date Prepared/By	Date Analyzed/By	DF Qual
Bromomethar	ie	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Carbon disulfi	de	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100
Carbon tetrac	hloride	2000U		ug/L	2000	1000	11/19/2013 00:00	11/19/2013 15:32	100
Chloroacetoni	trile	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Chlorobenzen	e	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Chloroethane		2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Chloroform		2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Chloromethar	ie	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
cis-1,2-Dichlo	roethene	2000U		ug/L	2000	1000) 11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
cis-1,3- Dichloroprope	ne	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
Dibromochlore	omethane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32 JSS	100 0
Dibromometha	ane	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Dichlorodifluo	romethan	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Ethyl ether		20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Ethyl methacr	ylate	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100
Ethylbenzene		2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Hexachlorobu	tadiene	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
Hexachloroeth	nane	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100
Isopropylbenz	ene	2000U		ug/L	2000	1000) 11/19/2013 00:00	11/19/2013 15:32	100
m,p-Xylene		4000U		ug/L	4000	2000) 11/19/2013 00:00	11/19/2013 15:32	100
Methacrylonit	rile	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100
Methyl acrylat	e	20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100
Methyl iodide		20000U		ug/L	20000	10000) 11/19/2013 00:00	11/19/2013 15:32	100 0
Methyl metha	crylate	20000U		ug/L	20000	10000) 11/19/2013 00:00 JSS	JSS 11/19/2013 15:32 JSS	100 0

FOUO

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: 93	990001				Date	Received:	11/19/2013	Matrix: Water (Mise	cellaneous)
Sample ID: 12	-0026-73				Date	Collected:	11/19/2013		
Parameters		Results	Uncert	Units	LOQ	MDL	Date Prepared/By	Date Analyzed/By	DF Qual
Methyl tert-butyl e {MtBE}	ther	20000U		ug/L	20000	10000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Methylene chloride	e	2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
n-Butylbenzene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
n-Propylbenzene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Naphthalene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
o-Xylene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Propionitrile		20000U		ug/L	20000	10000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
sec-Butylbenzene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Styrene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
tert-Butylbenzene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Tetrachloroethene {PCE}		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Tetrahydrofuran		20000U		ug/L	20000	10000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Toluene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
trans-1,2- Dichloroethene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
trans-1,3- Dichloropropene		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
trans-1,4-Dichloro butene	-2-	20000U		ug/L	20000	10000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Trichloroethene {T	CE}	2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Trichlorofluoromet	hane	2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Vinyl chloride		2000U		ug/L	2000	1000	11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
1,2-Dichloroethan	e-d4	100		%	90.8-109		11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
4-Bromofluoroben (S)	zene	100		%	91.1-106		11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Dibromofluoromet	hane	91.8		%	92.1-111		11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Toluene-d8 (S)		98.2		%	95-105		11/19/2013 00:00 JSS	11/19/2013 15:32 JSS	100 0
Analysis Desc: EF	PA 415.3		Prepara	tion Method:	EPA 415.3				
			Analytic	al Method: F	PA 415 3				

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: Sample ID:	93990001 12-0026-73				Matrix: Water (Miscellaneous)				
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF	Qual
Total Organic {TOC}	Carbon	15000		mg/L	500	250 11/23/2013 09:39 SWS	11/23/2013 09:44 SWS	100 0	
Analysis Desc	: EPA 7470A		Prepara	ation Method: E	PA 7470A				
Analytical Method: EPA 7470A									
Mercury		1.4		ug/L	0.20	0.020 11/21/2013 00:00 RWF	11/21/2013 00:00 RWF	1	

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: Sample ID:	93990002 VOC BLANK				Date Re Date Co	eceived: 11/19/2013 ollected: 11/19/2013	Matrix: Water (Misce	ellaneous)
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/I	By Date Analyzed/By	DF Qual
Volatiles								
Analysis Desc	: EPA 8260B		Preparation	n Method: EF	PA 5030B			
			Analytical I	Method: EPA	8260B			
1,1,1,2- Tetrachloroeth	ane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1,1-Trichlorc	ethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1,2,2- Tetrachloroeth	ane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1,2-Trichloro	ethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1-Dichloroet	hane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1-Dichloroet	hene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,1-Dichloropr	opene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2,3-Trichloro	benzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2,3-Trichloro	propane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2,4-Trichloro	benzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2,4- Trimethylbenz	ene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2-Dibromo-3 chloropropane	- 	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2-Dibromoet	hane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2-Dichlorobe	enzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2-Dichloroet	hane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,2-Dichloropr	opane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0	00 11/19/2013 15:09	1
1,3,5- Trimethylbenz	ene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,3-Dichlorobe	enzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,3-Dichloropr	opane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1,4-Dichlorobe	enzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
1-Chlorobutan	e	20U		ug/L	20	10 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1
2,2-Dichloropr	opane	2.0U		ug/L	2.0	1.0 11/19/2013 00:0 JSS	00 11/19/2013 15:09 JSS	1

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990002				Date R	eceived: 11/19/2013	Matrix: Water (Misce	ellaneous)
Sample ID:	VOC BLANK				Date C	ollected: 11/19/2013		
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF Qual
2-Butanone {	VIEK}	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
2-Chlorotolue	ne	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
2-Hexanone		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
2-Nitropropan	e	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
4-Chlorotolue	ne	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
4-Isopropyltol	uene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
4-Methyl-2-pe {MIBK}	entanone	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Acetone		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Acrylonitrile		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Allyl chloride		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Benzene		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Bromobenzer	ie	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Bromochloror	nethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Bromodichlor	omethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Bromoform		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Bromomethar	ne	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Carbon disulfi	de	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Carbon tetrac	hloride	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Chloroaceton	itrile	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Chlorobenzer	ie	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Chloroethane		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Chloroform		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
Chloromethar	ne	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1
cis-1,2-Dichlo	roethene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1

ANALYTICAL RESULTS

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID:	93990002				Date R	eceived: 11/19/2013	Matrix: Water (Miscellaneous		
Sample ID:	VOC BLANK				Date C	ollected: 11/19/2013			
Parameters		Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF Qual	
cis-1,3- Dichloroprope	ene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Dibromochlor	omethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Dibromometh	ane	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Dichlorodifluo e	romethan	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Ethyl ether		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Ethyl methacr	rylate	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Ethylbenzene		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Hexachlorobu	Itadiene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Hexachloroeth	hane	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Isopropylbenz	zene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
m,p-Xylene		4.0U		ug/L	4.0	2.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methacrylonit	rile	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methyl acrylat	te	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methyl iodide		20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methyl metha	crylate	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methyl tert-bu {MtBF}	ityl ether	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Methylene chi	loride	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
n-Butylbenzer	ne	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
n-Propylbenze	ene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	
Naphthalene		2.0U		ug/L	2.0	1.0 11/19/2013 00:00	11/19/2013 15:09	1	
o-Xylene		2.0U		ug/L	2.0	1.0 11/19/2013 00:00	11/19/2013 15:09	1	
Propionitrile		20U		ug/L	20	10 11/19/2013 00:00	11/19/2013 15:09	1	
sec-Butylbenz	zene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00	11/19/2013 15:09	1	
Styrene		2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1	

Workorder: 9399 ECBC DEMIL EFFLUENTS

Lab ID: 93990002 Sample ID: VOC BLAN	к		Date Received: 11/19/2013 Matrix: Water (Miscellaned Date Collected: 11/19/2013								
Parameters	Results	Uncert	Units	LOQ	MDL Date Prepared/By	Date Analyzed/By	DF Qual				
tert-Butylbenzene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Tetrachloroethene {PCE}	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Tetrahydrofuran	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Toluene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
trans-1,2- Dichloroethene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
trans-1,3- Dichloropropene	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
trans-1,4-Dichloro-2- butene	20U		ug/L	20	10 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Trichloroethene {TCE}	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Trichlorofluoromethane	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Vinyl chloride	2.0U		ug/L	2.0	1.0 11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
1,2-Dichloroethane-d4 (S)	95.7		%	90.8-109	11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
4-Bromofluorobenzene (S)	95.6		%	91.1-106	11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Dibromofluoromethane (S)	92		%	92.1-111	11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				
Toluene-d8 (S)	99.1		%	95-105	11/19/2013 00:00 JSS	11/19/2013 15:09 JSS	1				

Workorder: 9399 ECBC	DEMIL EFFLUENTS				
QC Batch: VS	SV/2860	An	alysis Method:	EPA 8260B	
OC Batch Method EF	PA 5030B				
	. 02000001 02000002				
Associated Lab Samples	<u>:</u> 93990001, 93990002				
METHOD BLANK: 4437	7				
		Blank			
Parameter	Units	Result	LOQ Qualifiers	S	
	News				
Volatiles	None	2.011	2.0		
	e ug/L	2.00	2.0		
1,1,1-Inchioroethane	ug/L	2.00	2.0		
1,1,2,2-Tetrachioroethan	e ug/L	2.00	2.0		
1,1,2-Trichloroethane	ug/L	2.00	2.0		
1,1-Dichloroethane	ug/L	2.00	2.0		
1,1-Dichloroethene	ug/L	2.00	2.0		
1,1-Dichloropropene	ug/L	2.00	2.0		
1,2,3-Trichlorobenzene	ug/L	2.00	2.0		
1,2,3-Trichloropropane	ug/L	2.00	2.0		
1,2,4-Trichlorobenzene	ug/L	2.00	2.0		
1,2,4-Trimethylbenzene	ug/L	2.00	2.0		
1,2-Dibromo-3-chloropro	pane ug/L	2.0U	2.0		
1,2-Dibromoethane	ug/L	2.0U	2.0		
1,2-Dichlorobenzene	ug/L	2.0U	2.0		
1,2-Dichloroethane	ug/L	2.0U	2.0		
1,2-Dichloropropane	ug/L	2.0U	2.0		
1,3,5-Trimethylbenzene	ug/L	2.0U	2.0		
1,3-Dichlorobenzene	ug/L	2.0U	2.0		
1,3-Dichloropropane	ug/L	2.0U	2.0		
1,4-Dichlorobenzene	ug/L	2.0U	2.0		
1-Chlorobutane	ug/L	20U	20		
2,2-Dichloropropane	ug/L	2.0U	2.0		
2-Butanone {MEK}	ug/L	20U	20		
2-Chlorotoluene	ug/L	2.0U	2.0		
2-Hexanone	ug/L	20U	20		
2-Nitropropane	ug/L	20U	20		
4-Chlorotoluene	ug/L	2.0U	2.0		
4-Isopropyltoluene	ug/L	2.0U	2.0		
4-Methyl-2-pentanone {N	1IBK} ug/L	20U	20		
Acetone	ug/L	20U	20		
Acrylonitrile	ug/L	20U	20		
Allyl chloride	ug/L	20U	20		
Benzene	ug/L	2.0U	2.0		
Bromobenzene	ug/L	2.0U	2.0		
Bromochloromethane	ug/L	2.0U	2.0		
Bromodichloromethane	ug/L	2.0U	2.0		
Bromoform	ug/L	2.0U	2.0		
Bromomethane	ug/L	2.0U	2.0		
Carbon disulfide	ug/L	20U	20		
Carbon tetrachloride	ug/L	2.0U	2.0		
Chloroacetonitrile	ug/L	20U	20		
Chlorobenzene	ug/L	2.0U	2.0		
Chloroethane	ug/L	2.0U	2.0		
Chloroform	ug/L	2.0U	2.0		

Workorder: 9399 ECBC DEMIL EFFLUENTS

METHOD BLANK: 44377						
Parameter	Units	Blank Result	LOQ Qualif	ïers		
Chloromethane	ug/L	2.0U	2.0			
cis-1,2-Dichloroethene	ug/L	2.0U	2.0			
cis-1,3-Dichloropropene	ug/L	2.0U	2.0			
Dibromochloromethane	ug/L	2.0U	2.0			
Dibromomethane	ug/L	2.0U	2.0			
Dichlorodifluoromethane	ug/L	2.0U	2.0			
Ethyl ether	ug/L	20U	20			
Ethyl methacrylate	ug/L	20U	20			
Ethylbenzene	ug/L	2.0U	2.0			
Hexachlorobutadiene	ug/L	2.0U	2.0			
Hexachloroethane	ug/L	20U	20			
Isopropylbenzene	ug/L	2.0U	2.0			
m,p-Xylene	ug/L	4.0U	4.0			
Methacrylonitrile	ug/L	20U	20			
Methyl acrylate	ug/L	20U	20			
Methyl iodide	ug/L	20U	20			
Methyl methacrylate	ug/L	20U	20			
Methyl tert-butyl ether {MtBE}	ug/L	20U	20			
Methylene chloride	ug/L	2.0U	2.0			
n-Butylbenzene	ug/L	2.0U	2.0			
n-Propylbenzene	ug/L	2.0U	2.0			
Naphthalene	ug/L	2.0U	2.0			
o-Xylene	ug/L	2.0U	2.0			
Propionitrile	ug/L	20U	20			
sec-Butylbenzene	ug/L	2.0U	2.0			
Styrene	ug/L	2.0U	2.0			
tert-Butylbenzene	ug/L	2.0U	2.0			
Tetrachloroethene {PCE}	ug/L	2.0U	2.0			
Tetrahydrofuran	ug/L	20U	20			
Toluene	ug/L	2.0U	2.0			
trans-1,2-Dichloroethene	ug/L	2.0U	2.0			
trans-1,3-Dichloropropene	ug/L	2.0U	2.0			
trans-1,4-Dichloro-2-butene	ug/L	20U	20			
Trichloroethene {TCE}	ug/L	2.0U	2.0			
Trichlorofluoromethane	ug/L	2.0U	2.0			
Vinyl chloride	ug/L	2.0U	2.0			
1,2-Dichloroethane-d4 (S)		102	90.8-109			
4-Bromofluorobenzene (S)		96.8	91.1-106			
Dibromofluoromethane (S)		93.4	92.1-111			
Toluene-d8 (S)		98.2	95-105			
LABORATORY CONTROL SAM	MPLE & LCSD:	44378	44379	24	Dec	

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max LCS RPD Qualifie	LCSD rs Qualifiers
Volatiles	None									
1,1,1,2-Tetrachloroethane	ug/L	20	20	20	99	102	85.6-130	2.99	30	
1,1,1-Trichloroethane	ug/L	20	19	19	94.6	93.8	87.1-127	0.849	30	
1,1,2,2-Tetrachloroethane	ug/L	20	18	20	90	97.7	79.9-121	8.2	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

LABORATORY CONTROL SAM	IPLE & LCSD:	44378	4	4379						
		Spike	LCS	I CSD	LCS	I CSD	% Rec		Max I	CS I CSD
Parameter	Units	Conc.	Result	Result 9	% Rec	% Rec	Limit	RPD	RPD Q	ualifiers Qualifiers
1,1,2-Trichloroethane	ug/L	20	19	19	92.9	96.3	85.4-120	3.59	30	
1,1-Dichloroethane	ug/L	20	18	19	91.4	94.7	82.1-125	3.55	30	
1,1-Dichloroethene	ug/L	20	19	20	94.7	99.3	77-140	4.74	30	
1,1-Dichloropropene	ug/L	20	19	19	94.6	96.2	87-129	1.68	30	
1,2,3-Trichlorobenzene	ug/L	20	19	20	96.4	99.3	83.2-117	2.96	30	
1,2,3-Trichloropropane	ug/L	20	17	19	87.2	96.8	81.8-121	10.4	30	
1,2,4-Trichlorobenzene	ug/L	20	19	20	96.3	99.9	84.2-122	3.67	30	
1,2,4-Trimethylbenzene	ug/L	20	19	20	94.3	98.5	86.3-123	4.36	30	
1,2-Dibromo-3-chloropropane	ug/L	20	18	18	88.2	90.2	70.7-128	2.24	30	
1,2-Dibromoethane	ug/L	20	19	20	94.6	98.9	87.3-123	4.44	30	
1,2-Dichlorobenzene	ug/L	20	19	19	93.3	95.5	81.2-114	2.33	30	
1,2-Dichloroethane	ug/L	20	18	19	89.9	92.6	76.8-134	2.96	30	
1,2-Dichloropropane	ug/L	20	19	20	92.9	98.4	85.5-118	5.75	30	
1,3,5-Trimethylbenzene	ug/L	20	19	20	96.4	98.5	84-124	2.15	30	
1,3-Dichlorobenzene	ug/L	20	19	19	93.8	97	80.6-114	3.35	30	
1,3-Dichloropropane	ug/L	20	19	19	93.9	94.4	86.6-121	0.531	30	
1,4-Dichlorobenzene	ug/L	20	18	19	90.1	96.3	84.7-113	6.65	30	
1-Chlorobutane	ug/L	100	92	94	92.1	94.4	73.2-121	2.47	30	
2,2-Dichloropropane	ug/L	20	20	20	102	101	69.1-143	0.985	30	
2-Butanone {MEK}	ug/L	100	83	90	82.9	90.2	43.6-145	8.43	30	
2-Chlorotoluene	ug/L	20	19	20	94.8	97.5	79.4-117	2.81	30	
2-Hexanone	ug/L	100	90	93	90.3	93.3	62.3-124	3.27	30	
2-Nitropropane	ug/L	100	110	100	107	104	49.7-146	2.84	30	
4-Chlorotoluene	ug/L	20	19	20	94.9	98.1	81.3-115	3.32	30	
4-Isopropyltoluene	ug/L	20	19	20	96.9	99.3	81.1-118	2.45	30	
4-Methyl-2-pentanone {MIBK}	ug/L	100	88	94	88.2	94.3	76-120	6.68	30	
Acetone	ug/L	100	64	76	63.9	76.4	21.6-168	17.8	30	
Acrylonitrile	ug/L	100	84	95	83.7	94.7	71.8-122	12.3	30	
Allyl chloride	ug/L	100	96	100	96.3	100	69.2-127	3.77	30	
Benzene	ug/L	20	19	19	94	97.2	84.3-120	3.35	30	
Bromobenzene	ug/L	20	19	20	94	98.4	86.4-116	4.57	30	
Bromochloromethane	ug/L	20	19	20	93.2	99.8	82.7-127	6.84	30	
Bromodichloromethane	ug/L	20	18	19	90.3	94.6	84.4-126	4.65	30	
Bromoform	ug/L	20	18	18	87.8	91.6	71.8-132	4.24	30	
Bromomethane	ug/L	20	19	19	94.5	97.4	57-139	3.02	30	
Carbon disulfide	ug/L	100	92	97	91.8	96.6	46.3-139	5.1	30	
Carbon tetrachloride	ug/L	20	18	19	91.8	94.4	80.5-132	2.79	30	
Chloroacetonitrile	ug/L	100	95	95	95.4	95.4	61.8-138	0	30	
Chlorobenzene	ug/L	20	19	20	97	97.6	82.8-115	0.617	30	
Chloroethane	ug/L	20	17	19	84.8	93.5	67.1-119	9.76	30	
Chloroform	ug/L	20	18	19	89	93.7	82-123	5.15	30	
Chloromethane	ug/L	20	15	16	73.9	77.7	63.2-112	5.01	30	
cis-1,2-Dichloroethene	ug/L	20	19	20	97	101	44.2-175	4.04	30	
cis-1,3-Dichloropropene	ug/L	20	19	20	92.6	99.2	81-119	6.88	30	
Dibromochloromethane	ug/L	20	18	18	89.5	92.4	78.8-126	3.19	30	
Dibromomethane	ug/L	20	19	19	92.5	97	85.7-121	4.75	30	
Dichlorodifluoromethane	ug/L	20	17	16	85.4	79.5	40.1-124	7.16	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

LABORATORY CONTROL SAM	IPLE & LCSD:	44378	2	14379							
_		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	LCS LO	CSD
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers Q	ualifiers
Ethyl ether	ug/L	100	88	93	87.5	93.2	71.2-131	6.31	30		
Ethyl methacrylate	ug/L	100	96	99	96	99	79.6-123	3.08	30		
Ethylbenzene	ug/L	20	20	20	98.8	99.5	86.8-121	0.706	30		
Hexachlorobutadiene	ug/L	20	20	21	98	104	81.7-128	5.94	30		
Hexachloroethane	ug/L	100	91	92	91.3	92.3	70.5-119	1.09	30		
Isopropylbenzene	ug/L	20	20	20	99.4	102	75-111	2.58	30		
m,p-Xylene	ug/L	40	40	40	100	101	86.9-118	0.995	30		
Methacrylonitrile	ug/L	100	93	99	93	98.9	75.2-119	6.15	30		
Methyl acrylate	ug/L	100	92	94	91.6	94.3	74.7-126	2.9	30		
Methyl iodide	ug/L	100	93	98	92.6	97.9	58.9-140	5.56	30		
Methyl methacrylate	ug/L	100	92	98	92.2	98	78.3-122	6.1	30		
Methyl tert-butyl ether {MtBE}	ug/L	100	87	93	87.1	93.2	75.7-126	6.77	30		
Methylene chloride	ug/L	20	19	20	94.3	101	80.7-125	6.86	30		
n-Butylbenzene	ug/L	20	20	20	97.6	99.6	82.8-126	2.03	30		
n-Propylbenzene	ug/L	20	19	20	96.6	99.5	77.1-121	2.96	30		
Naphthalene	ug/L	20	19	20	95	102	79.7-124	7.11	30		
o-Xylene	ug/L	20	20	20	102	100	84.6-116	1.98	30		
Propionitrile	ug/L	100	84	89	83.8	88.6	53.4-139	5.57	30		
sec-Butylbenzene	ug/L	20	20	20	98	99.1	79.6-121	1.12	30		
Styrene	ug/L	20	20	20	98.9	102	87.6-119	3.09	30		
tert-Butylbenzene	ug/L	20	19	20	95.5	101	79.2-122	5.6	30		
Tetrachloroethene {PCE}	ug/L	20	21	20	103	99.5	76.8-135	3.46	30		
Tetrahydrofuran	ug/L	100	80	88	79.5	87.8	69-124	9.92	30		
Toluene	ug/L	20	19	20	94.6	99.7	87.2-119	5.25	30		
trans-1,2-Dichloroethene	ug/L	20	19	19	95.7	96	86.4-126	0.313	30		
trans-1,3-Dichloropropene	ug/L	20	18	19	91.6	95.3	71-122	3.96	30		
trans-1,4-Dichloro-2-butene	ug/L	100	86	92	85.8	92	66.1-114	6.97	30		
Trichloroethene {TCE}	ug/L	20	19	20	96.1	98.4	85.7-124	2.37	30		
Trichlorofluoromethane	ug/L	20	18	19	92	95.4	57.9-134	3.63	30		
Vinyl chloride	ug/L	20	18	19	91.8	92.6	79.8-133	0.868	30		
1,2-Dichloroethane-d4 (S)					97.8	102	90.8-109	4.2	30		
4-Bromofluorobenzene (S)					98.4	101	91.1-106	2.61	30		
Dibromofluoromethane (S)					99.1	101	92.1-111	1.9	30		
Toluene-d8 (S)					99.5	102	95-105	2.48	30		
MATRIX SPIKE & MATRIX SPI	KE DUPLICATE	:	2	14381		Origina	al: 44380		[Spike	ed HSN = 939	90001]
		Original	Spike	MS	MSE	D M	IS MSD	% Re	С	Max MS	MSD
Parameter	Units	Result	Conc.	Result	Resul	t %Re	ec % Rec	Limi	it RPD	RPD Qualifie	er Qualifier
Volatiles	None										
1,1,1,2-Tetrachloroethane	ug/L	0	20000	18000	19000) 92	.1 94.9	85.6-13	0 2.99	30	
1 1 1-Trichloroethane	ua/l	n	20000	17000	17000) 83	3** 84 3	** 87 1-12	7 1 10	30	
1 1 2 2 Totrophorosthono	ug/L	0	20000	17000	1000			70.0.40	1 5 07	20	
	uy/L	U	20000	17000	10000		50 91.2	19.9-12	1 0.0/	30	
1,1,2-Trichloroethane	ug/L	0	20000	17000	18000	J 86	.5 91.6	85.4-12	J 5.73	30	
1,1-Dichloroethane	ug/L	0	20000	17000	17000) 84	.7 86.8	82.1-12	5 2.45	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:			44381			Original:	44380	[Spiked HSN = 93990001]		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max MS RPD Qualifier	MSD Qualifier
1,1-Dichloroethene	ug/L	0	20000	17000	18000	85.6	90.8	77-140 5.9	30	
1,1-Dichloropropene	ug/L	0	20000	18000	17000	90.8	87.2	87-129 4.04	30	
1,2,3-Trichlorobenzene	ug/L	0	20000	18000	18000	90.9	89.3	83.2-117 1.78	30	
1,2,3-Trichloropropane	ug/L	0	20000	18000	17000	87.8	86.1	81.8-121 1.96	30	
1,2,4-Trichlorobenzene	ug/L	0	20000	18000	18000	91.3	89	84.2-122 2.55	30	
1,2,4-Trimethylbenzene	ug/L	0	20000	18000	18000	92.1	88.8	86.3-123 3.65	30	
1,2-Dibromo-3- chloropropane	ug/L	0	20000	16000	16000	78.5	80.2	70.7-128 2.14	30	
1,2-Dibromoethane	ug/L	0	20000	17000	18000	86.5**	90.5	87.3-123 4.52	30	
1,2-Dichlorobenzene	ug/L	0	20000	17000	18000	87.2	88	81.2-114 0.91	30	
1,2-Dichloroethane	ug/L	0	20000	16000	17000	81.8	83.6	76.8-134 2.18	30	
1,2-Dichloropropane	ug/L	0	20000	17000	18000	86.7	92	85.5-118 5.93	30	
1,3,5-Trimethylbenzene	ug/L	0	20000	18000	18000	91.8	91.8	84-124 0	30	
1,3-Dichlorobenzene	ug/L	0	20000	18000	18000	90.4	88.2	80.6-114 2.46	30	
1,3-Dichloropropane	ug/L	0	20000	18000	17000	88	87.4	86.6-121 0.68	30	
1,4-Dichlorobenzene	ug/L	0	20000	17000	18000	87	87.8	84.7-113 0.91	30	
1-Chlorobutane	ug/L	0	100000	95000	96000	95.3	95.6	73.2-121 0.31	30	
2,2-Dichloropropane	ug/L	0	20000	18000	18000	88.4	89.6	69.1-143 1.35	30	
2-Butanone {MEK}	ug/L	0	100000	95000	99000	94.5	99.4	43.6-145 5.05	30	
2-Chlorotoluene	ug/L	0	20000	18000	18000	90.7	90.7	79.4-117 0	30	
2-Hexanone	ug/L	0	100000	98000	100000	98.2	101	62.3-124 2.81	30	
2-Nitropropane	ug/L	0	100000	110000	110000	107	110	49.7-146 2.76	30	
4-Chlorotoluene	ug/L	0	20000	18000	18000	91.4	91.4	81.3-115 0	30	
4-Isopropyltoluene	ug/L	0	20000	18000	18000	90.7	89.7	81.1-118 1.11	30	
4-Methyl-2-pentanone {MIBK}	ug/L	0	100000	90000	95000	89.5	95.3	76-120 6.28	30	
Acetone	ug/L	0	100000	89000	110000	89.3	105	21.6-168 16.2	30	
Acrylonitrile	ug/L	0	100000	81000	95000	81.2	95.1	71.8-122 15.8	30	
Allyl chloride	ug/L	0	100000	99000	100000	99.1	101	69.2-127 1.9	30	
Benzene	ug/L	0	20000	18000	18000	88.1	89.8	84.3-120 1.91	30	
Bromobenzene	ug/L	0	20000	18000	18000	91.6	90.5	86.4-116 1.21	30	
Bromochloromethane	ug/L	0	20000	17000	18000	86.4	91.6	82.7-127 5.84	30	
Bromodichloromethane	ug/L	0	20000	17000	18000	83.9**	87.6	84.4-126 4.31	30	
Bromoform	ug/L	0	20000	16000	18000	81.6	89.1	71.8-132 8.79	30	
Bromomethane	ug/L	0	20000	19000	20000	93.4	99	57-139 5.82	30	
Carbon disulfide	ug/L	0	100000	92000	100000	92	99.9	46.3-139 8.23	30	
Carbon tetrachloride	ug/L	0	20000	17000	17000	84	83.9	80.5-132 0.11	30	
Chloroacetonitrile	ug/L	20000	100000	100000	110000	81	87.6	61.8-138 7.83	30	
Chlorobenzene	ug/L	0	20000	18000	19000	92	93	82.8-115 1.08	30	
Chloroethane	ug/L	0	20000	17000	18000	86.5	87.6	67.1-119 1.26	30	
Chloroform	ug/L	0	20000	17000	18000	87.2	87.7	82-123 0.57	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:			44381			Original: 44380 [Spiked HSN = 9399000			0001]	
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max MS RPD Qualifier	MSD Qualifier
Chloromethane	ug/L	0	20000	14000	17000	72.2	83	63.2-112 13.9	30	
cis-1,2-Dichloroethene	ug/L	0	20000	18000	18000	88.7	91.4	44.2-175 3	30	
cis-1,3-Dichloropropene	ug/L	0	20000	18000	18000	88.9	91.1	81-119 2.44	30	
Dibromochloromethane	ug/L	0	20000	17000	17000	83.5	84.7	78.8-126 1.43	30	
Dibromomethane	ug/L	0	20000	18000	18000	89.9	91.4	85.7-121 1.65	30	
Dichlorodifluoromethane	ug/L	0	20000	15000	17000	76.3	82.5	40.1-124 7.81	30	
Ethyl ether	ug/L	0	100000	85000	95000	85	95.3	71.2-131 11.4	30	
Ethyl methacrylate	ug/L	0	100000	95000	100000	94.6	100	79.6-123 5.55	30	
Ethylbenzene	ug/L	0	20000	18000	18000	89.7	90.5	86.8-121 0.88	30	
Hexachlorobutadiene	ug/L	0	20000	18000	17000	89.2	87.3	81.7-128 2.15	30	
Hexachloroethane	ug/L	0	100000	93000	93000	93	92.5	70.5-119 0.53	30	
Isopropylbenzene	ug/L	0	20000	19000	19000	93.8	92.7	75-111 1.18	30	
m,p-Xylene	ug/L	0	40000	37000	36000	92.1	90.6	86.9-118 1.64	30	
Methacrylonitrile	ug/L	0	100000	94000	98000	93.8	98.4	75.2-119 4.79	30	
Methyl acrylate	ug/L	0	100000	93000	97000	92.5	97.4	74.7-126 5.16	30	
Methyl iodide	ug/L	0	100000	92000	99000	92.1	98.8	58.9-140 7.02	30	
Methyl methacrylate	ug/L	0	100000	93000	99000	93.4	99.2	78.3-122 6.02	30	
Methyl tert-butyl ether {MtBE}	ug/L	0	100000	83000	91000	82.7	91	75.7-126 9.56	30	
Methylene chloride	ug/L	0	20000	17000	19000	84.7	96	80.7-125 12.5	30	
n-Butylbenzene	ug/L	0	20000	19000	18000	93	89.7	82.8-126 3.61	30	
n-Propylbenzene	ug/L	0	20000	19000	18000	94.2	92.2	77.1-121 2.15	30	
Naphthalene	ug/L	0	20000	18000	19000	90.1	93.1	79.7-124 3.28	30	
o-Xylene	ug/L	0	20000	18000	19000	90.8	95.5	84.6-116 5.05	30	
Propionitrile	ug/L	0	100000	85000	92000	85.1	92.1	53.4-139 7.9	30	
sec-Butylbenzene	ug/L	0	20000	19000	18000	94.4	91	79.6-121 3.67	30	
Styrene	ug/L	0	20000	18000	19000	91.3	93.8	87.6-119 2.7	30	
tert-Butylbenzene	ug/L	0	20000	18000	18000	91.7	89.9	79.2-122 1.98	30	
Tetrachloroethene {PCE}	ug/L	0	20000	19000	19000	92.8	93.5	76.8-135 0.75	30	
Tetrahydrofuran	ug/L	0	100000	85000	97000	84.7	96.8	69-124 13.3	30	
Toluene	ug/L	0	20000	18000	18000	90.2	90.3	87.2-119 0.11	30	
trans-1,2-Dichloroethene	ug/L	0	20000	17000	18000	86.3**	88.7	86.4-126 2.74	30	
trans-1,3-Dichloropropene	ug/L	0	20000	17000	18000	86.3	88.9	71-122 2.97	30	
trans-1,4-Dichloro-2-butene	ug/L	0	100000	92000	90000	92.1	89.5	66.1-114 2.86	30	
Trichloroethene {TCE}	ug/L	0	20000	19000	18000	92.7	90.3	85.7-124 2.62	30	
Trichlorofluoromethane	ug/L	0	20000	18000	19000	92.4	96.4	57.9-134 4.24	30	
Vinyl chloride	ug/L	0	20000	17000	18000	84.6	91.5	79.8-133 7.84	30	
1,2-Dichloroethane-d4 (S)	%	100				98	90.8	90.8-109 7.63	30	
4-Bromofluorobenzene (S)	%	100				102	99	91.1-106 2.99	30	
Dibromofluoromethane (S)	%	91.8				101	98.7	92.1-111 2.3	30	
Toluene-d8 (S)	%	98.2				102	104	95-105 1.94	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

MATRIX SPIKE & MATRIX	SPIKE DUPLICATE	≣:		44381		Original: 4	4380	[Spike	ed HSN = 93990	0001]
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max MS RPD Qualifier	MSD Qualifier

Workorder: 9399 ECBC DE	MIL EFFLUENTS			
QC Batch: VSV/2	2864	An	alysis Method:	EPA 8270C
QC Batch Method: EPA 3	3510C			
Associated Lab Samples	93990001			
	0000001			
METHOD BLANK: 44413				
		Blank		
Parameter	Units	Result	LOQ Qualifiers	
Semivolatiles	None			
1,2,4-Trichlorobenzene	ug/L	10U	10	
1,2-Dichlorobenzene	ug/L	10U	10	
1,3-Dichlorobenzene	ug/L	10U	10	
1,4-Dichlorobenzene	ug/L	10U	10	
2,2'-oxybis(1-Chloropropane	e) ug/L	10U	10	
2,4,5-Trichlorophenol	ug/L	10U	10	
2,4,6-Trichlorophenol	ug/L	10U	10	
2,4-Dichlorophenol	ug/L	10U	10	
2,4-Dimethylphenol	ug/L	10U	10	
2.4-Dinitrophenol	ug/L	20U	20	
2.4-Dinitrotoluene	ug/L	10U	10	
2.6-Dinitrotoluene	ug/L	10U	10	
2-Chloronaphthalene	ug/L	10U	10	
2-Chlorophenol	ug/L	10U	10	
2-Methyl-4 6-dinitrophenol	ug/l	10U	10	
2-Methylnaphthalene	ug/l	10U	10	
2-Methylphenol {o-Cresol}	ug/l	10U	10	
2-Nitroaniline	ug/l	100	10	
2-Nitrophenol	ug/l	10U	10	
3-Nitroaniline	ug/l	10U	10	
4-Chloro-3-methylphenol	ug/l	10U	10	
4-Chloroaniline	ug/L	100	10	
4-Nitroaniline	ug/L	100	10	
4-Nitrophenol	ug/l	10U	10	
Acenaphthene	ug/L	100	10	
Acenaphthylene	ug/L	100	10	
Anthracene	ug/L	100	10	
Benzolalovrene	ug/L	100	10	
Benzo[b]fluoranthene	ug/L	100	10	
Benzola h ilpervlene	ug/L	100	10	
Benzo[k]fluoranthene	ug/L	100	10	
Benzyl alcohol	ug/L	100	10	
Benz[a]anthracene	ug/L	100	10	
Bis(2-chloroethoxy)methane	ug/L	100	10	
Bis(2-chloroethyl)ether	ug/L	100	10	
Butylbenzylphthalate	ug/L	100	10	
Chrysene	ug/L	100	10	
Di/2-ethylhexyl\nhthalate	ug/L	100	10	
Di_n_butyInbthalate	ug/L	100	10	
	ug/L	100	10	
Dihenzofuran	ug/L	100	10	
Dibenzía hlanthracene	ug/L	100	10	
Diethylphthalate	ug/L	100	10	
Dimethylphthalate	ug/L	100	10	
Chine any pricialate	ug/L	100	10	

Workorder: 9399 ECBC DEMIL EFFLUENTS

METHOD BLANK: 44413

Parameter	Units	Blar Rest	nk ult	LOQ	Qualifier	s						
Fluoranthene	ug/L	10	U	10								
Fluorene	ug/L	10	U	10								
Hexachlorobenzene	ug/L	10	U	10								
Hexachlorobutadiene	ug/L	10	U	10								
Hexachlorocyclopentadiene	ug/L	10	U	10								
Hexachloroethane	ug/L	10	U	10								
Indeno[1,2,3-cd]pyrene	ug/L	10	U	10								
Isophorone	ug/L	10	U	10								
m,p-Methylphenol {m,p- Cresol}	ug/L	10	U	10								
N-Nitrosodimethylamine	ug/L	10	U	10								
N-Nitrosodiphenylamine	ug/L	10	U	10								
N-Nitrosodipropylamine	ug/L	10	U	10								
Naphthalene	ug/L	10	U	10								
Nitrobenzene	ug/L	10	U	10								
p-Bromophenyl phenyl ether	ug/L	10	U	10								
p-Chlorophenyl phenyl ether	ug/L	10	U	10								
Pentachlorophenol	ug/L	10	U	10								
Phenanthrene	ug/L	10	U	10								
Phenol	ug/L	10	U	10								
Pyrene	ug/L	10	U	10								
2-Fluorobiphenyl (S)		90	.2	65.6-111								
2-Fluorophenol (S)		71	.7	47.9-90.3								
Nitrobenzene-d5 (S)		ç	94	58.5-121								
p-Terphenyl-d14 (S)		10)9	58.9-117								
Phenol-d5 (S)		39	.9	33.1-51.8								
2,4,6-Tribromophenol (S)		84	.7	71.9-121								
LABORATORY CONTROL SA	MPLE & LCSD:	44414		44415								
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	LCS	LCSD	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers	Qualifiers	
Semivolatiles	None											
1,2,4-Trichlorobenzene	ug/L	100	83	83	82.8	82.9	53.9-121	0.121	30			
1,2-Dichlorobenzene	ug/L	100	75	73	74.9	73.4	62.8-112	2.02	30			
1,3-Dichlorobenzene	ug/L	100	74	71	73.7	71.1	60.8-111	3.59	30			

1,2-Dichlorobenzene	ug/L	100	75	73	74.9	73.4	62.8-112	2.02	30
1,3-Dichlorobenzene	ug/L	100	74	71	73.7	71.1	60.8-111	3.59	30
1,4-Dichlorobenzene	ug/L	100	74	72	74.1	71.7	63.2-108	3.29	30
2,2'-oxybis(1-Chloropropane)	ug/L	100	92	94	92.4	93.9	66.5-120	1.61	30
2,4,5-Trichlorophenol	ug/L	100	95	96	94.5	96	71.5-123	1.57	30
2,4,6-Trichlorophenol	ug/L	100	97	99	97.3	98.9	69.7-124	1.63	30
2,4-Dichlorophenol	ug/L	100	94	96	93.5	95.7	59.4-126	2.33	30
2,4-Dimethylphenol	ug/L	100	89	90	88.8	90.4	63.1-128	1.79	30
2,4-Dinitrophenol	ug/L	100	84	89	84.4	89.3	65.5-120	5.64	30
2,4-Dinitrotoluene	ug/L	100	93	95	92.8	95.5	77.4-116	2.87	30
2,6-Dinitrotoluene	ug/L	100	96	99	96.2	98.9	77.3-112	2.77	30
2-Chloronaphthalene	ug/L	100	89	91	89.4	91	74.1-108	1.77	30
2-Chlorophenol	ug/L	100	88	89	87.6	89.5	70.8-115	2.15	30
2-Methyl-4,6-dinitrophenol	ug/L	100	84	88	83.9	87.5	77.9-114	4.2	30
2-Methylnaphthalene	ug/L	100	86	87	85.9	87.5	52.2-142	1.85	30

Workorder: 9399 ECBC DEMIL EFFLUENTS

LABORATORY CONTROL SA	MPLE & LCSD:	44414	4	4415							
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max LCS	LCSD	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD Qual	ifiers Qualifiers	
2-Methylphenol {o-Cresol}	ug/L	100	83	84	82.8	84	72.5-103	1.44	30		
2-Nitroaniline	ug/L	100	96	98	95.8	97.5	77.6-135	1.76	30		
2-Nitrophenol	ug/L	100	92	95	91.9	95.2	60.2-117	3.53	30		
3-Nitroaniline	ug/L	100	81	88	81.4	88.4	29.6-178	8.24	30		
4-Chloro-3-methylphenol	ug/L	100	92	94	91.9	93.5	60.7-124	1.73	30		
4-Chloroaniline	ug/L	100	83	87	83	87.2	36.8-154	4.94	30		
4-Nitroaniline	ug/L	100	72	85	71.6	85.2	52.6-139	17.3	30		
4-Nitrophenol	ug/L	100	41	43	40.7	42.8	29.9-58.7	5.03	30		
Acenaphthene	ug/L	100	91	94	91.2	93.6	74.5-117	2.6	30		
Acenaphthylene	ug/L	100	95	98	94.7	97.8	77.1-113	3.22	30		
Anthracene	ug/L	100	92	96	91.8	95.8	75.3-120	4.26	30		
Benzo[a]pyrene	ug/L	100	89	94	89.4	93.7	73.9-119	4.7	30		
Benzo[b]fluoranthene	ug/L	100	94	96	94.2	95.7	76.2-122	1.58	30		
Benzo[g,h,i]perylene	ug/L	100	81	87	80.7	86.5	69.1-129	6.94	30		
Benzo[k]fluoranthene	ug/L	100	95	100	95	102	66.6-131	7.11	30 1	1	
Benzyl alcohol	ug/L	100	78	80	77.7	80.1	69.6-113	3.04	30		
Benz[a]anthracene	ug/L	100	100	110	100	105	74.2-130	4.88	30		
Bis(2-chloroethoxy)methane	ug/L	100	92	95	92.4	95.4	62.6-118	3.19	30		
Bis(2-chloroethyl)ether	ug/L	100	88	91	87.9	90.6	77.5-109	3.03	30		
Butylbenzylphthalate	ug/L	100	98	99	98.2	98.7	63.6-117	0.508	30		
Chrysene	ug/L	100	90	93	90.2	92.7	80.7-116	2.73	30		
Di(2-ethylhexyl)phthalate	ug/L	100	100	100	102	104	63.9-124	1.94	30		
Di-n-butylphthalate	ug/L	100	93	96	93.1	95.5	72-122	2.55	30		
Di-n-octylphthalate	ug/L	100	110	110	105	107	53.8-123	1.89	30		
Dibenzofuran	ug/L	100	92	95	92	94.9	71.9-134	3.1	30		
Dibenz[a,h]anthracene	ug/L	100	72	78	72	78.3	50.7-141	8.38	30		
Diethylphthalate	ug/L	100	97	99	96.6	99.1	71.5-129	2.55	30		
Dimethylphthalate	ug/L	100	85	86	85	85.7	52.3-120	0.82	30		
Fluoranthene	ug/L	100	93	96	92.6	96.3	73.5-125	3.92	30		
Fluorene	ug/L	100	94	97	94.5	96.8	74.1-119	2.4	30		
Hexachlorobenzene	ug/L	100	93	96	92.7	96.3	70.5-120	3.81	30		
Hexachlorobutadiene	ug/L	100	80	76	79.8	75.6	49.1-127	5.41	30		
Hexachlorocyclopentadiene	ug/L	100	81	82	81.4	81.6	38.6-132	0.245	30		
Hexachloroethane	ug/L	100	74	69	73.6	68.6	60.4-112	7.03	30		
Indeno[1,2,3-cd]pyrene	ug/L	100	91	99	91.3	99.3	68.6-133	8.39	30		
Isophorone	ug/L	100	88	90	87.9	90	56.7-113	2.36	30		
m,p-Methylphenol {m,p- Cresol}	ug/L	200	150	150	75	76.4	61.6-92.3	1.85	30		
N-Nitrosodimethylamine	ug/L	100	63	66	63	65.7	45.9-83.8	4.2	30		
N-Nitrosodiphenylamine	ug/L	100	92	97	91.7	97.3	68.3-134	5.93	30		
N-Nitrosodipropylamine	ug/L	100	92	95	92.2	95.2	73-128	3.2	30		
Naphthalene	ug/L	100	85	88	85.5	88.1	58.6-117	3	30		
Nitrobenzene	ug/L	100	90	93	89.8	92.7	55.6-122	3.18	30		
p-Bromophenyl phenyl ether	ug/L	100	93	96	93.1	95.8	73-116	2.86	30		
p-Chlorophenyl phenyl ether	ug/L	100	100	100	99.7	102	71.8-119	2.28	30		
Pentachlorophenol	ug/L	100	80	82	80.2	81.7	61.5-133	1.85	30		
Phenanthrene	ug/L	100	91	93	90.8	93.4	73.1-118	2.82	30		

Workorder: 9399 ECBC DEMIL EFFLUENTS

LABORATORY CONTROL SA	AMPLE & LCSD:	44414		44415							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD	LCS LC Qualifiers Qu	SD alifiers
Phenol	ug/L	100 100	41 100	42 100	41.4 104	42.5 105	34.2-54.3	2.62	30 30		
2-Eluorobiphenvl (S)	ug/L	100	100	100	95.1	93.6	65 6-111	1.59	50		
2-Fluorophenol (S)					69.7	71.3	47.9-90.3	2.27			
Nitrobenzene-d5 (S)					95	95.5	58.5-121	0.525			
p-Terphenyl-d14 (S)					98.3	98.5	58.9-117	0.203			
Phenol-d5 (S)					39.6	40.8	33.1-51.8	2.99			
2,4,6-Tribromophenol (S)					91.6	94.1	/1.9-121	2.69			
MATRIX SPIKE & MATRIX S	PIKE DUPLICATE	:		44417		Origina	al: 44416	[Spike	ed HSN = 9399	0001]
Parameter	Units	Original Result	Spike Conc.	MS Result	MSE Resul) M: t % Re	S MSD c % Rec	% Rec Limit F	RPD	Max MS RPD Qualifier	MSD Qualifier
Semivolatiles	None										
1,2,4-Trichlorobenzene	ug/L	0	10000	8600	9000) 8	6 89.8	53.9-121 4	4.32	30	
1,2-Dichlorobenzene	ug/L	0	10000	7700	7700) 77.	2 76.7	62.8-112 (0.65	30	
1,3-Dichlorobenzene	ug/L	0	10000	7600	7500) 75.	9 75	60.8-111 ⁻	1.19	30	
1,4-Dichlorobenzene	ug/L	0	10000	7600	7500) 76.	5 75.2	63.2-108 ⁻	1.71	30	
2,2'-oxybis(1- Chloropropane)	ug/L	0	10000	9100	9200	91.	2 92.5	66.5-120 ⁻	1.42	30	
2,4,5-Trichlorophenol	ug/L	0	10000	9300	9700	92.	9 96.9	71.5-123 4	4.21	30	
2,4,6-Trichlorophenol	ug/L	0	10000	9500	9900	94.	7 98.8	69.7-124 4	4.24	30	
2,4-Dichlorophenol	ug/L	0	10000	9300	9700	92.	8 96.7	59.4-126 4	4.12	30	
2,4-Dimethylphenol	ug/L	0	10000	8600	8800) 85.	8 87.7	63.1-128 2	2.19	30	
2,4-Dinitrophenol	ug/L	0	10000	8600	9200) 85.	8 92.2	65.5-120	7.19	30	
2,4-Dinitrotoluene	ug/L	0	10000	9300	9800	93.	3 97.9	77.4-116 4	4.81	30	
2,6-Dinitrotoluene	ug/L	0	10000	9600	10000	95.	7 100	77.3-112 4	4.39	30	
2-Chloronaphthalene	ug/L	0	10000	9100	9500	90.	7 95.5	74.1-108 \$	5.16	30	
2-Chlorophenol	ug/L	0	10000	8600	8900) 86.	4 89.4	70.8-115	3.41	30	
2-Methyl-4,6-dinitrophenol	ug/L	0	10000	8400	8700	83.	5 87.4	77.9-114 4	4.56	30	
2-Methylnaphthalene	ug/L	0	10000	8900	9300	89.	1 93.2	52.2-142	4.5	30	
2-Methylphenol {o-Cresol}	ug/L	0	10000	8200	8300) 81.	6 83	72.5-103	1.7	30	
2-Nitroaniline	ug/L	0	10000	9400	9800	94.	1 97.8	77.6-135 3	3.86	30	
2-Nitrophenol	ug/L	0	10000	9200	9600	91.	5 96.1	60.2-117	4.9	30	
3-Nitroaniline	ug/L	0	10000	8300	9000	82.	7 89.7	29.6-178 8	8.12	30	
4-Chloro-3-methylphenol	ug/L	0	10000	9100	9400	90.	9 94.3	60.7-124 3	3.67	30	
4-Chloroaniline	ug/L	0	10000	8300	8900	83.	1 88.9	36.8-154 6	6.74	30	
4-Nitroaniline	ug/L	0	10000	7900	8800) 79.	2 88.3	52.6-139 ⁻	10.9	30	
4-Nitrophenol	ug/L	0	10000	4100	4300	40.	7 43.2	29.9-58. \$	5.96	30	
Acenaphthene	ug/L	0	10000	9400	9700	93.	7 97.2	74.5-117	3.67	30	
Acenaphthylene	ug/L	0	10000	9700	10000	96.	5 101	77.1-113 4	4.56	30	
Anthracene	ug/L	0	10000	9300	9700	92.	6 96.9	75.3-120 4	4.54	30	

Workorder: 9399 ECBC DEMIL EFFLUENTS

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:		TE:	44417			Original:	44416	[Spiked HSN = 93990001]			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max MS RPD Qualifier	MSD Qualifier	
Benzo[a]pyrene	ug/L	0	10000	9000	9400	89.8	93.6	73.9-119 4.14	30		
Benzo[b]fluoranthene	ug/L	0	10000	9600	9500	95.9	94.7	76.2-122 1.26	30		
Benzo[g,h,i]perylene	ug/L	0	10000	7900	8600	79	86.2	69.1-129 8.72	30		
Benzo[k]fluoranthene	ug/L	0	10000	9600	11000	95.5	107	66.6-131 11.4	30	1	
Benzyl alcohol	ug/L	0	10000	7700	8000	77.4	80.3	69.6-113 3.68	30		
Benz[a]anthracene	ug/L	0	10000	10000	10000	100	104	74.2-130 3.92	30		
Bis(2-chloroethoxy)methane	ug/L	0	10000	9200	9600	92.3	95.8	62.6-118 3.72	30		
Bis(2-chloroethyl)ether	ug/L	0	10000	8700	9000	86.6	89.7	77.5-109 3.52	30		
Butylbenzylphthalate	ug/L	0	10000	9900	9800	98.8	98	63.6-117 0.81	30		
Chrysene	ug/L	0	10000	8900	9400	89.2	94.1	80.7-116 5.35	30		
Di(2-ethylhexyl)phthalate	ug/L	0	10000	10000	10000	102	102	63.9-124 0	30		
Di-n-butylphthalate	ug/L	0	10000	9300	9700	93.3	96.8	72-122 3.68	30		
Di-n-octylphthalate	ug/L	0	10000	11000	11000	107	107	53.8-123 0	30		
Dibenzofuran	ug/L	0	10000	9400	9900	93.7	98.6	71.9-134 5.1	30		
Dibenz[a,h]anthracene	ug/L	0	10000	7200	7800	72	77.6	50.7-141 7.49	30		
Diethylphthalate	ug/L	0	10000	9900	10000	98.9	103	71.5-129 4.06	30		
Dimethylphthalate	ug/L	0	10000	9000	9400	89.6	94.2	52.3-120 5.01	30		
Fluoranthene	ug/L	0	10000	9200	9800	92.1	97.6	73.5-125 5.8	30		
Fluorene	ug/L	0	10000	9600	10000	96.1	100	74.1-119 3.98	30		
Hexachlorobenzene	ug/L	0	10000	9300	9800	93	97.7	70.5-120 4.93	30		
Hexachlorobutadiene	ug/L	0	10000	8300	8500	83.1	85.1	49.1-127 2.38	30		
Hexachlorocyclopentadiene	ug/L	0	10000	8300	9000	83.3	90.2	38.6-132 7.95	30		
Hexachloroethane	ug/L	0	10000	7600	7400	76.3	74.2	60.4-112 2.79	30		
Indeno[1,2,3-cd]pyrene	ug/L	0	10000	9100	9800	91.2	98.5	68.6-133 7.7	30		
Isophorone	ug/L	0	10000	8700	9000	86.8	89.8	56.7-113 3.4	30		
m,p-Methylphenol {m,p- Cresol}	ug/L	0	20000	15000	15000	74.8	76.3	61.6-92. 1.99	30		
N-Nitrosodimethylamine	ug/L	0	10000	6200	6500	61.8	65.2	45.9-83. 5.35	30		
N-Nitrosodiphenylamine	ug/L	0	10000	9500	9800	95	98.5	68.3-134 3.62	30		
N-Nitrosodipropylamine	ug/L	0	10000	9300	9500	92.5	94.8	73-128 2.46	30		
Naphthalene	ug/L	0	10000	8800	9100	88.3	91.5	58.6-117 3.56	30		
Nitrobenzene	ug/L	0	10000	8900	9200	89.2	92.1	55.6-122 3.2	30		
p-Bromophenyl phenyl ether	ug/L	0	10000	9300	9800	92.9	98	73-116 5.34	30		
p-Chlorophenyl phenyl ether	ug/L	0	10000	10000	11000	101	106	71.8-119 4.83	30		
Pentachlorophenol	ug/L	0	10000	8000	8400	79.8	83.9	61.5-133 5.01	30		
Phenanthrene	ug/L	0	10000	9100	9500	91.1	95.3	73.1-118 4.51	30		
Phenol	ug/L	0	10000	4100	4200	41.2	42	34.2-54. 1.92	30		
Pyrene	ug/L	0	10000	10000	10000	103	103	72.2-112 0	30		
2-Fluorobiphenyl (S)	%	94.8				90.2	92.9	65.6-111 2.95			
2-Fluorophenol (S)	%	74.7				69.2	70	47.9-90. 1.15			

Workorder: 9399 ECBC DEMIL EFFLUENTS

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE:		44417		Original:	44416	[Spike	ed HSN = 93990	0001]
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max MS RPD Qualifier	MSD Qualifier
Nitrobenzene-d5 (S)	%	96				93.3	95.1	58.5-121 1.91		
p-Terphenyl-d14 (S)	%	118				98.3	97.7	58.9-117 0.61		
Phenol-d5 (S)	%	42.5				40.1	39.9	33.1-51. 0.5		
2,4,6-Tribromophenol (S)	%	93.4				92.9	95.2	71.9-121 2.45		

Workorder: 9399 ECBC DEMIL EFFLUENTS

QC Batch:	MET/6073		Anal	ysis Method	d:	EPA 200).7				
QC Batch Method:	EPA 200.2 Prep										
Associated Lab Sam	oles: 93990001										
METHOD BLANK: 44	1442										
		Die									
Parameter	Unite	Dia	ult.		Jualifiare						
	01113		uit		auanner 5						
ICP Metals	None										
Arsenic	mg/L	0.2	0U	0.20							
Barium	mg/L	0.01		0.010							
Cadmium	mg/L	0.01		0.010							
Chromium	mg/L	0.02		0.020							
Leau	mg/L	0.1		0.10							
Selenium	mg/L	0.2		0.20							
Silver	IIIy/L	0.01	00	0.010							
LABORATORY CON	TROL SAMPLE & LCSD:	44443		44444							
		Chilco			1.00		% Rec		May		COD
Paramotor	Linite	Spike	Popult	LCSD Recult	% Poc	% Poc	Limit	RPD		Cualifiars C	USD Vualifiors
	UTINS	CONC.	Result	Result	70 Rec	70 Rec	Linin	N D	NF D	Quaimers	luaimers
ICP Metals	None										
Arsenic	mg/L	1	1.0	1.0	104	105	92.6-113	0.957	20		
Barium	mg/L	1	1.0	1.0	101	102	88.6-115	0.985	20		
Cadmium	mg/L	1	0.99	0.99	99.2	98.6	88.1-112	0.607	20		
Chromium	mg/L	1	1.0	1.0	99.9	101	90.3-111	1.1	20		
Lead	mg/L	1	1.0	1.0	100	101	91.2-113	0.995	20		
Selenium	mg/L	1	1.0	1.0	102	103	90.6-112	0.976	20		
Silver	mg/L	1	1.0	1.0	103	104	94.2-112	0.966	20		
MATRIX SPIKE & MA	ATRIX SPIKE DUPLICATE	:		44446		Origina	l: 44445		[Spike	ed HSN = 939	990001]
		Original	Spike	MS	MSD) MS	S MSD	% Rec		Max MS	MSD
Parameter	Units	Result	Conc.	Result	Resul	t % Ree	c % Rec	: Limit	RPD	RPD Qualifie	er Qualifier
ICP Metals	None										
Arsenic	mg/L	0.29	1	1.5	1.5	5 126	6 119	70-130	5.71	20	
Barium	ma/L	0.17	1	1.1	1.1	95.2	2 96	70-130	0.83	20	
Cadmium	mg/L	0.008	1	0.87	0.88	86.7	7 87.9	70-130	1.37	20	
Chromium	ma/l	16	1	18	10) 24 8	3** 29.2	** 70-130	16.3	20	
Lead	ma/l	0.036	1	0.89	0.80	88.0	- <u>-</u> 0.2 0 88.0	70-130	0	20	
Selenium	mg/L	0.026	1	14	1 4	141 141	2 00.0 2** 141	** 70-130	0.70	20	
Silver	mg/L	0.020	1	1.7	1.7	. 1 <i>1</i> 1	ידיי <u>-</u> 140 איי	** 70-130	0.70	20	
	ilig/L	0.002	I	1.5	1.0	, 140	5 140	10-130	0	20	

Workorder: 9399 ECBC DEMIL EFFLUENTS

QC Batch:	MET/6074		Ana	lysis Method	:	EPA 7470	A			
QC Batch Method:	EPA 7470A									
Associated Lab San	nples: 93990001									
METHOD BLANK: 4	44447									
		Bla	ink							
Parameter	Units	Res	ult	LOQ Q	ualifiers					
Mercury	ug/L	0.2	0U	0.20						
LABORATORY COM	NTROL SAMPLE: 44448									
		Sp	ike	LCS		LCS	% Rec			
Parameter	Units	Co	nc.	Result	%	Rec	Limits	Qualifiers		
Mercury	ug/L		5	5.2		105	75-125			
MATRIX SPIKE & N	IATRIX SPIKE DUPLICATE:			44450		Original:	44449	[Spik	ed HSN = 9399	0001]
		Original	Spike	MS	MSD	MS	MSD	% Rec	Max MS	MSD
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit RPD	RPD Qualifier	Qualifier
Mercury	ug/L	1.4	5	6.8	6.9	108	110	75-125 1.83	20	

Workorder: 9399 ECBC DEMIL EFFLUENTS

QC Batch: SF	PC/5331		Analys	sis Method:		EPA 41	5.3			
QC Batch Method: EF	PA 415.3									
Associated Lab Samples	93990001									
METHOD BLANK: 4450	1									
		Bla	nk							
Parameter	Units	Res	ult	LOQ QI	Jalifiers	3				
Total Organic Carbon {To	DC} mg/L	0.50	U	0.50						
LABORATORY CONTRO	DL SAMPLE & LCSD:	44502	4	4503						
		Snike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result %	6 Rec	% Rec	Limit	RPD	RPD	Qualifiers Qualifiers
Total Organic Carbon {To	DC} mg/L	4.3	3.7	3.8	87.1	89.2	85-111	2.38	20	
MATRIX SPIKE SAMPLE	E:		Original:	44504					[Spike	ed HSN = 93990001]
		Origir	nal	Spike		MS	MS		% Rec	
Parameter	Units	Res	ult	Conc.		Result	% Rec		Limits	Qualifiers
Total Organic Carbon {T	DC} mg/L		15	5000		19000	377**		70-130	

QUALITY CONTROL DATA QUALIFIERS

Workorder: 9399 ECBC DEMIL EFFLUENTS

QUALITY CONTROL PARAMETER QUALIFIERS

[1] The instrument response for this analyte was measured using manual integration.

TERMINOLOGY & ABBREVIATIONS (ENV)

Terms:

AIPH = US Army Institute of Public Health

DF = Dilution Factor

DUP = Duplicate Analysis

HSN = Horizon Sample Number (Lab Number).

J = The reported result is an estimated value; the result is between the method detection limit (MDL) and the limit of quantitation (LOQ).

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

LOQ = Limit of Quantitation

LS = Laboratory Sciences

MDL = Method Detection Limit

MS = Matrix Spike

MSD = Matrix Spike Duplicate

Qual = Data Qualifier

RPD = Relative Percent Difference

SML = Sample Management Laboratory (AIPH)

(S) = Surrogate Standard (Found in Analytical Results and QC Listings)

U = The analyte/element was not detected at or above the limit of quantitation (LOQ).

Uncert = Measurement Uncertainty (Reported in Radiochemical Analyses Only)

** Indicates QC failure. For example, recoveries or relative percent difference (RPD) out of range.

Units:

% = percent

cc = cubic centimeter

cm = centimeter

cm2 = square centimeter

cpm = counts per minute

dpm = disintegrations per minute

f = fibers

g = gram

in2 = square inch

kg = kilogram

L = Liter

- m3 = cubic meter
- MFL = million fibers per liter
- mg = milligram
- min = minute
- mL = milliliter
- mm2 = square millimeter
- mm3 = cubic millimeter
- MPN = most probable number
- ng = nanogram
- NTU = Nephelometric Turbidity Units
- pCi = picocurie
- pg = picogram
- ppb = parts per billion
- ppm = parts per million
- S = siemens
- struct = structures
- TON = Threshold Odor Number
- uCi = microcurie
- ug = microgram
- uL = microliter
- umhos = micromhos (conductivity unit)
- umole = micromole
SAPHC

The following page(s) comprise the

SML Documents

Dil(O); Paint Chip(P); Soil/Sediment/Sludge(S); Waste Water(WW); Water(W); Wipe(WI)	Rinlooical Liquid(BL); Biological Solid(BS); Bulk(B); Drinking Water(D); Frag.(F);	MATERY CODES: Air(A):
	1020	
11/19/13/120	19Maria WULL WULL	JN Brund
Date & Time Comment/Remarks	Date & Time Accepted By:	Relinquished By:
	. Itend Date Shipped-	Shipment Method -
Total Number of Containers		
		VUC 13/4015
× ×		
		12-0026-
		12-0026-
	75	- 9200 - 21
3	73 1 1 1	12 -002 6 -
	- 73 11/19/13 0800	12-0026
Containers Metals SVOC PH.TSS TOC VOC	AMPLE ID DATE TIME f o Matrix	FIELD S
	Sampled	
ANALYSIS REQUESTED	AR DAYS) HIGH (14 CAL. DAYS) TOP (7 CAL. DAYS)	
PRESERVATIVE (See Codes)	ER - Bill Brochey	PROJECT OFFIC
	ER -	PROJECT NUMB
	ECBC	INSTALLATION -

CHAIN OF CUSTODY

Tuesday, November 26, 2013 4:24:52 PM

FOUO

The following report(s) comprise the Contractor Data Report(s) for Analytical Tests performed at contract laboratories

in support of the US Army Public Health Command.

Microbac

^{mmary} FOUO **Microbac Laboratories, Inc.**

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Public Health Command	Project: Inorganics-Full Group	Report:	13K1185
Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201	Project Number: 9399	Reported:	11/26/2013 15:52
APG, MD 21010-5422	Project Manager: Heidi Taylor		

SAMPLE SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
93990001 12-0026-73	13K1185-01	Water	Not Specified	11/19/2013 08:00	11/19/2013 16:50

Microbac Laboratories, Inc., Baltimore Division

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: 410-633-1800

Fax: 410-633-6553

www.microbac.com

IMMAIY FOUO Microbac Laboratories, Inc.

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Public Health Command Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201 Pr APG, MD 21010-5422 Pr

Microbac

Project: Inorganics-Full Group Project Number: 9399 Project Manager: Heidi Taylor

CASE NARRATIVE

Public Health Command Inorganics-Full Group Heidi Taylor Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201 APG , MD 21010-5422

1 sample(s) were received by Lewis B. Gunn III of Microbac laboratories, Baltimore Division on 11/19/2013 4:50:00 PM and sample(s) condition(s) were checked and found to be acceptable unless otherwise noted in the 'Cooler Receipt Log' or 'Statement of Qualifications' sections of this report. The samples were logged into the LIMS by Lewis B. Gunn III on 11/21/2013 3:28:00 PM and compared to the client DQO. Any deviations from the client DQO and method specific quality control requirements are noted in the 'Statement of Data Qualifications'.

Other Notes/Comments:

Page 26 blank

STATEMENT OF DATA QUALIFICATIONS

All samples recieved in proper condition unless otherwise noted below. All quality control parameters were meet unless otherwise noted below.

Qualifications:

Sample received past holding time; analysis best performed at time of collection.

Analyte & Samples(s) Qualified:

pН

13K1185-01[93990001 12-0026-73]

Qualifications:

pH@20.3°C

Analyte & Samples(s) Qualified:

pН

13K1185-01[93990001 12-0026-73]

Microbac Laboratories, Inc., Baltimore Division

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 3 of 27

Phone: 410-633-1800 Fax: 410-633-6553

Fax: 410-633-6553 www.microbac.com

Report: 13K1185 Reported: 11/26/2013 15:52

11 Dec 2013

^{mmary} FOUO **Microbac Laboratories, Inc.**

11 Dec 2013

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Microbac

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Public Health Command	Project: Inorganics-Full Group	Report:	13K1185
Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201	Project Number: 9399	Reported:	11/26/2013 15:52
APG, MD 21010-5422	Project Manager: Heidi Taylor		

93990001 12-0026-73

13K1185-01 (Water) Sampled: 11/19/2013 08:00; Type: Not Specified

Analyte	Result	Reporting Limit	Units	Prepared	Analyzed	Analyst	Method	Notes
Microbac Laboratories, Inc., Baltimore Division								
Wet Chemistry								
рН	6.60	0.100	pH Units	112213 0730	112213 0820	LCR	SM (20) 4500H B	H6, Z10
Total Dissolved Solids	220000	1000	mg/L	112213 1648	112513 1300	EWM	SM (20) 2540 C	
Total Suspended Solids	2700	100	mg/L	112213 1609	112513 1115	EWM	SM (20) 2540D	

Microbac Laboratories, Inc., Baltimore Division

Male

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 4 of 27

DRAFT- DF	Effluent Characterization Summary
	0

^{mmary} FOUO **Microbac Laboratories, Inc.**

Phone: 410-633-1800 Fax: 410-633-6553 www.microbac.com

Microbac

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Public Health Command	Project: Inorganics-Full Group	Report:	13K1185
Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201	Project Number: 9399	Reported:	11/26/2013 15:52
APG, MD 21010-5422	Project Manager: Heidi Taylor		

Wet Chemistry - Quality Control Summary

Microbac Laboratories, Inc., Baltimore Division

Analyte	Result	Reporting Limit	Units	Spike Level	Source	%RFC	%REC Limits	RPD	RPD Limit	Notes
	Result	Linit	Cinto	Level	Result	JUKLE	Linits	NI D	Linit	110103
Batch 1347173 - WetChem_Water_Prep										
Blank (1347173-BLK1)				Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Suspended Solids	ND	0.50	mg/L							U
LCS (1347173-BS1)				Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Suspended Solids	100	5.0	mg/L	100.0		100	90-110			
Duplicate (1347173-DUP1)	Sou	rce: 13K1094-	01RE1	Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Suspended Solids	27	2.5	mg/L		28			3.64	10	
Batch 1347187 - WetChem_DW_Prep										
Blank (1347187-BLK1)				Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Dissolved Solids	ND	10	mg/L							U
LCS (1347187-BS1)				Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Dissolved Solids	22000	100	mg/L	20000		108	90-110			
Duplicate (1347187-DUP1)	Sou	rce: 13K0267-	·01	Prepared:	11/21/2013	Analyzed:	11/22/2013			
Total Dissolved Solids	170	10	mg/L		170			1.18	10	
Batch 1347228 - WetChem_Water_Prep										
Blank (1347228-BLK1)				Prepared:	11/22/2013	Analyzed:	11/25/2013			
Total Dissolved Solids	ND	10	mg/L							U
LCS (1347228-BS1)				Prepared:	11/22/2013	Analyzed:	11/25/2013			
Total Dissolved Solids	22000	100	mg/L	20000		110	90-110			

Microbac Laboratories, Inc., Baltimore Division

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 27

	IVII	crobac		alurie	s, mc.				Phone: 4	10-633-1800
Microhac	Microhac Baltimore Division							Fax: 4	10-633-6553	
merobae	2101 V	an Deman	Street •]	Baltimore	• MD 21	224			www.t	nicrobac.com
	2101 1		Sheet	Danimore	, 1110 21	221				
	С	ERTIFIC	ATE O	F ANAL	YSIS					
Public Health Command		Project: In	norganics-F	full Group				Rep	ort: 13k	K1185
Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201	Proje	ect Number: 9	399					Repo	orted: 11/2	26/2013 15:52
APG, MD 21010-5422	Proje	ct Manager: H	Ieidi Taylo	r						
	Wet C	Chemistry -	- Quality	Control S	Summary	7				
М	Microbac	: Laborato	ories, In	c., Baltin	nore Div	ision				
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1347228 - WetChem_Water_Prep										
Duplicate (1347228-DUP1)	Sou	rce: 13K1185	-01RE1	Prepared:	11/22/2013	Analyzed:	11/25/2013			
Total Dissolved Solids	220000	1000	mg/L		220000			0.0451	10	
Batch 1347229 - WetChem_Water_Prep										
Blank (1347229-BLK1)				Prepared:	11/22/2013	Analyzed:	11/25/2013			
Total Suspended Solids	ND	0.50	mg/L							U
LCS (1347229-BS1)				Prepared: 1	11/22/2013	Analyzed:	11/25/2013			
Total Suspended Solids	110	5.0	mg/L	100.0		110	90-110			
Duplicate (1347229-DUP1)	Sou	rce: 13K1147	-01	Prepared:	11/22/2013	Analyzed:	11/25/2013			
Total Suspended Solids	1.5	2.5	mg/L		1.5			0.00254	10	U
Batch 1348001 - WetChem_Water_Prep										
LCS (1348001-BS1)				Prepared &	k Analyzed:	11/22/201	3			
pH	7.01		pH Units	7.000		100	99.3-100.7			
LCS (1348001-BS2)				Prepared &	k Analyzed:	11/22/201	3			
pH	7.00		pH Units	7.000		100	99.3-100.7			
Duplicate (1348001-DUP1)	Sou	rce: 13K1185	-01	Prepared &	k Analyzed:	11/22/201	3			
рН	6.60	0.100	pH Units		6.60			0.00	200	
Duplicate (1348001-DUP2)	Sou	rce: 13K1211	-01	Prepared &	k Analyzed:	11/22/201	3			
pH	8.05	0.100	pH Units		8.05			0.00	200	

FOUO

Microbac Laboratories, Inc.

Microbac Laboratories, Inc., Baltimore Division

Male

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

DRAFT- DF Effluent Characterization Summary

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 6 of 27

11 Dec 2013

FOUO

11 Dec 2013

Phone: 410-633-1800

Fax: 410-633-6553

www.microbac.com

Microbac Laboratories, Inc.

Microbac

Baltimore Division

2101 Van Deman Street • Baltimore, MD 21224

CERTIFICATE OF ANALYSIS

Public Health Command	Project: Inorganics-Full Group	Report:	13K1185
Contract #W91ZLK-09-P-1505, Bldg E2100, Rm 201	Project Number: 9399	Reported:	11/26/2013 15:52
APG, MD 21010-5422	Project Manager: Heidi Taylor		

Qualifiers/Notes and Definitions

General Definitions:

DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the reporting limit					
dry	Sample results reported on a dry weight basis					
RPD	Relative Percent Difference					
Microbac Lal	ooratories, Inc., Baltimore Division					
H6	Sample received past holding time; analysis best performed at time of collection.					
U	Sample concentration is less than the MDL.					
Z10	pH@20.3°C					

Analysis Qualifiers/Notes:

Microbac Laboratories,	Inc., Baltimore Division
------------------------	--------------------------

Z10 pH@20.3°C

H6 Sample received past holding time; analysis best performed at time of collection.

Microbac Laboratories, Inc., Baltimore Division

Michael D. Arbaugh For Melanie C. Duszynski, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 27