SCIFICF FTH गानLDतामतS

Tuesday 12 March 2019 Ooms Room 13:30-14:45 Tight Inmah Available at 13:00
acid and beyond

A lunch time mission to boldly go where no delegation has gone before...

The Expanding Chemical Universe: From C1 to C10 and Beyond Science for Diplomats at EC-90 The Hague, 12 March 2019

Starring:
Mr Cheng Tang, SAB Chair
Dr Jonathan E. Forman, Science Policy Adviser and SAB Secretary
Mr Peter Brud, Ms Maria Hemme, and Ms Giovanna Pontes Office of Strategy and Policy

With special guest star Ms Andrea Dymytrova

Let us Know You are Here!

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Schedule 1

Guidelines for Schedule 1

The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:
(a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article ll;
(b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this Convention because one or more of the following conditions are met
It possesses a chemical structure closely comparableproperties comparableproperties;
properties that would iii) It may be used as a precursor in to be used as a chemical weapon; production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere;
(c) It has little or no use for purposes not prohibited under this Convention.

ORGANISATION FOR THE
PROHIBITION OF CHEMICAL WEAPONS
Working Together for a World Free of Chemical Weapons (1) @opew

Schedule 2

Guidelines for Schedule 2
The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a chemical listed in Schedule 2, part A, should be included in Schedule 2 :
(a) It poses a significant risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that could enable it to be used as a chemical weapon;
(b) It may be used as a precursor in one of the chemical reactions at the final stage of formation of a chemical listed in Schedule 1 or Schedule 2, part $\mathrm{A}_{;}$
(c) It poses a significant risk to the object and purpose of this Convention by Virtue of its importancein
Schedule 2 , part A_{i} (d) It is not produced in under this Convention.

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:
(a) It has been produced, stockpiled or used as a chemical weapon;
(b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that
mites a isk to
c) It poses a risk to the object and pupose of this Convention by virtue of its mportance in the prod Schedule 2, part B;
(d) It may be produced in larg
prohibited under this Conventio

$$
\text { Schedule } 3 \text { Part } \mathrm{B} \text {, Precursors }
$$

[^0]
Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Scientific Aldvisory Board's Recommendations to the Fourth Review Conference of the Chemical Weapons Convention

A quick reference guide to the executive summary recommendations of the OPCW Scientific Advisory Board's report on developments in science and technology to the Fourth Review Conference (RC-4/DG.1, dated 30 April 2018).

edule 2

ule 2
taken into account in considering whether a toxic 1 or a precursor to a Schedule 1 chemical or to a
r A, should be included in Sched the object and purpose in Schedule 2

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:
(a) It has been produced, stockpiled or used as a chemical weapon;
"Given the substantial changes in chemistry and chemical industry since the schedules were finalised a quarter century ago, a review of the schedules should be considered to assess whether: (a) the chemicals currently listed are in the appropriate Schedule, and (b) any toxic chemicals or specific precursors should be added to or removed from the Schedules."

Scheduled Chemicals under Chemical Weapons Convention (CWC)

Before We Begin...

- Listen to the Science Adviser
- Stamp words as you hear them!
- A stamped horizontal, vertical or diagonal row of 5 "wins"
- $1^{\text {st }}$ person to get a Bingo wins "acetylcholinesterase"

Next prizes are "Schedule 1" Key Chains

After $1^{\text {st }}$ Bingo, $1^{\text {st }}$ Bingo in a chair wins a model kit

सि
路

Before We Begin...

- Listen to the Science Adviser
- Stamp words as you hear

1 horizontal, vertical Il row of 5 "wins"
o get a Bingo cholinesterase"

Next prizes are "Schedule 1" Key Chains

After $1^{\text {st }}$ Bingo, $1^{\text {st }}$ Bingo in a chair wins a model kit

OPCW
路 纪
[\#]

The Chemical Universe: Scheduled and Unscheduled

B. SCHEDULES OF CHEMICALS The following Schedules list toxic chemicals and their precursors. For the purpose of
mplementing this Convention these Schedules identify chemicals for the application of verification measurues according to the provisions of the Verification Annex Pursuant to Article II, subparagraph 1 (a), these Schecdules do not constitute a definition of chemical weapons.
Whenever reference is made to groups of dialkylated chemicals, followed by a list of alkyl groups in parentheses, all chemicals possible by all possible combinations of
allyl groups listed in the parentheses are considered as listed in the respective Schedule as long as they are not explicitly exempted A chemical marked "*" on Schedule 2, part A, is subject to special thresholds for declaration and verification, as specified in Part VII of the Verification Anmex.)
Schedule 1
(CAS registry
A. Toxic chemicals: number)
(1) O-Alkyl ($\left(\mathrm{C}_{10}\right.$, incl. cycloalkyl alkyl (Me, Et, n-Pt or i-PT)-phosphonofluoridates
$\begin{array}{lll}\text { e.g. Sarin: } & \begin{array}{l}\text { O-Isopropyl methylphosphonofluoridate } \\ \text { Soman: } \\ \text { O-Pinacolyl methylphosphonofluoridate }\end{array} & (107-44.8) \\ (96-64-0)\end{array}$
(2) O-Alkyl $\left(\mathrm{C}_{10}\right.$, incl. cycloallhyl) N,N-dialkyl (Me, Et, n-Pr or i-PT) phosphoramidocyanidates
e.g. Tabun: O-Ethyl N,N-dimethyl
(3) O-Alkyl (H or $\leq \mathrm{C}_{10}$, incl cycloalkyl) S-2-dialkyl (Me, Et, n-Pror i-Pr)-aminoethyl alkyl Me, Et, n-Pr or i-Pr phosphonothiolates and
e.g. VX: $\quad \begin{aligned} & \text { O-Ethyl S-2-diisopropylaminoethyl } \\ & \text { methyl phosphonothiolate }\end{aligned}$
(4) Sulfur mustards:

2-Chloroethylchloromethylsulfide Mustard gas: Bis(2-chloroethyl)sulfid Bis(2 -chloroeethylthio) methane
Sesquimustard. 1,2 -Bis(2-chloroethylthio)ethane 1,3 -Bis ($($-chloroethylthio)-n-propane
1,4 -Bis $(2$-chloroethylthio)-n-butane 1,5-Bis(2-chloroethylthio)-n-pentane Bis (2-chloroethylthiomethy) ether O-Mustard. Bis(2-chloroeethyllthioethy)ether

(5) Lewisites:

Lewisite 1. 2-Chlorovinyldichloroarsine Lewisite 3: Tris(2-chlorovinyl)arsine
(6) Nitrogen mustards:

HN1: Bis(2-chloroethyl)ethylamine
HN2: Bis(2-chloroethyl)methylamin
HN2: Bis(2-chloroethyl) methylamine HN3: Tris(2-chloroethyl)amine
(7) Saxitoxin
) Ricin
B. Precursors:
(9) Alkyl (Me, Et, n-Pr or i-PT) phosphonyldifluorides e.g. DF: Methylphosphonyldifluoride
(10) O -Alkyl (H or $\mathrm{S} \mathrm{C}_{10}$, incl. cycloalkyl) O -2-dialkyl (Me, Et, n-PT or i-PT)-aminoethyl alkyl Me, Et, n-Pr or i-PT) phosphonites and
corresponding allyylated or protonated salts
e.g. QL: O-Ethyl O-2-diisopropylaminoethyl methylphosphonite
(11) Chlorosarin O-Isopropyl methylphosphonochloridate
(12) Chlorosoman: O-Pinacolyl methylphosphonochloridate

Schedule 2

A. Toxic chemicals:
(1) Amiton: O,O-Diethyl S-[2-(diethylamino)ethyl] phosphorothiolate and corresponding alkylated or protonated salts
(2) PFIB: 1,1,3,3,3-Pentafluoro-2-(tifluoromethy)-1-propene
(382-21-8)
(3) BZ: 3-Quimuclidinyl benzilate (*)
B. Precursors:
(4) Chemicals, except for those listed in Schedule 1, containing a phosphorus atom to which is bonded
one mettyl, ethyl or propyl (normal or iso) group
but not fuuther carbon atoms, but not further carbon atoms,

$\begin{array}{l}\text { e.g. Methylphosphonyl dichloride } \\ \text { Dimethyl methylphosphonate }\end{array}$	$(676-97-1)$	
Exenption:	$\begin{array}{l}\text { Fonofos: O-Ethyl S-phenyl } \\ \text { ethylphosphonothiolothionate }\end{array}$	$(756-79-6)$

(5) NN -Dialkyl ($\mathrm{Me}, \mathrm{Et}, \mathrm{n}$-Pt or i-Pt) phosphoramidic dihalides
(6) Dialkyl (Me, Et, n-Pr or i-PT) N,N-dialkyl
(Me, Et, n-Pr or i-Pt)-phosphoramidates
(7) Arsenic trichloride
(8) 2,2-Diphenyl-2-hydroxyacetic acid (76-93-7)
(1619-34-7)
(10) NN-Diallyyl (Me, Et, n-PT or $\left.i-P_{t}\right)$ aminoethyl-2-chlorides N, N-Dialkyl $(\mathrm{Me}$, Et, n-PT or $1-\mathrm{Pt}$ aminoethyl-2-chlonits
and corresponding protonated salts
(11) NN-Dialkyl (Me, Et, n-PT or i-PT) aminoethane-2-ols
and corresponding protonated salt
Exemptions: $\begin{aligned} & \text { N,N-Dimethylaminoethanol } \\ & \text { and corresponding protonated salt }\end{aligned}$ and corresponding protonated salts
N,N-Diethylaminoethanol and corresponding protonated salts
(12) N,N-Diallyl (Me, Et, n-Pr or i-PT) aminoethane-2-thiols and corresponding protonated salts
(13) Thiodiglycol: Bis(2-hydroxyethyl)sulfide

Pinacolyl alcohol: 3,3-Dimethylbutan-2-ol

Schedule 3
A. Toxic chemicals:
(1) Phosgene: Carbonyl dichloride (75-44-5)
(2) Cyanogen cluorid
(3) Hydrogen cyanide

What Do You Remember?

Lets Quickly Review Where we left of from July

Schedule 2

Schedule 3

Guidelines for Schedule 3
The following criteria shall be taken into account in considering whether a toxit chemical or precuisor, not listed in other Schedules, should be included in
Schedule 3: (a) it has been produced, stockpiled or used as a chemical weapon; (b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that (c) It poses a risk to the object and purpose of this Convention by virtue of its (c) It poses a risk to the object and purpose of this Convention by virtue of its
importance in the production of one or more chemicals listed in Schedule 1 or Schedule 2 , part $B_{;}$ (d) It may be produced in large commercial quantities for purposes not

How are chemicals organized in the Schedules?

OPCW

How are chemicals organized in the Schedules?


```
Groups
```


by threat to the convention and industrial relevance

Gangnam sytle

Used as CW

Common use

Different use and toxicity

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Schedule 1

Guidelines for Schedule 1

The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:
(a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article Il;
(b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this
(i) It possesses a chemical structure closely related to that of other chemicals listed in Schedule 1, and has, or can be expected to have, comparableproperties;
(ii) It possesses such lethal or incapacitating toxicity as well as other properties that would enable it to be used as a chemical weapon; (iii) It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere

$$
\begin{aligned}
& \text { (c) It has little or no use for purposes not prohibited under this Convention. } \\
& \text { Schedule } 1 \text { Part A, Toxic Chemicals }
\end{aligned}
$$

ORGANISATION FOR THE
PROHIBITION OF CHEMICAL WEAPONS Working Together for a World Free of Chemical Weapons
 (1) mmom

Schedule 2

Guidelines for Schedule 2
The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a chemical listed in Schedule 2, part A, should be included in Schedule 2
(a) It poses a significant risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties
b) It may be used as a precursor in a chenl weapon;
(b) It may be used as a precursor in one of the chemical reactions at the final stage (c) It poses a significant risk to the object and purpose of this $\mathbf{C o}$ A;
(c)
virtue of its importance in the production of a chemical listed in Schedule 1 or Schedule 2, part A;
(d) It is not produced in large commercial quantities for purposes not prohibited under this Convention.

${ }_{2 A(1)}^{\text {mintinn }} \quad P$

Relationship between Schedules, illustrated with sulfur mustard.

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included is Schedule 3:
,
(b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that might enable it to be used as a chemical weapon
(c) It poses a risk to the object and purpose of this Convention by virtue of it importance in the
d) It may be produced in large

Schedule 3 Part A, Toxic Chemical

Schedule 3 Part B, Precursors a- ila

Scheduled chemicals, including those in schedules 1 and 2 , con have scientifically and economically
important uses. This chart captures the number of yearly scientific publications that retert to them.

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Schedule 1

Guidelines for Schedule 1
The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:

3 Groups of chemicals

 (15 total chemical substances)
Schedule 2

Schedule 3

Guidelines for Schedule 2 The following criteria shall be taken int chemical not listed in Schedule 1 or

29 Single chemical substances

isted in Schedule 2, part A, s possesses such lethal or inca

$$
\begin{aligned}
& \text { nay be used as a precursor in } \\
& \text { formation of a chemical listed }
\end{aligned}
$$

poses a significant risk to the object and purpose of this Convention by ve of its importance in the production of a chemical listed in Schedule 1 or

sidule 2, part $A_{;}$ under this Convention.

(c) It poses a risk to the object and purpose of this Convention by virtue of its mportance in the production of one or more chemicals listed in Schedule 1 Schedule 2, part B_{i}

Lets Quickly Review Where we left of from July

Schedule 2

Guidelines for Schedule 2
The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a
chemical listed in Schedule 2 , orta A should be included in Schedule 2 : (a) It poses is signififcant risk to the thould be included in Schedule it possesses such lethal or incapacitating toxicity as well as other properties that could enable it to be used as a chemical weapon; (b) It may be used as a precursor in one of the chemicol reactions at the final stage of formation of a chemical listed in Schedule 1 or Schedule 2, part A
(c) virtue of its importance in the production of a chemical listed in Schedule 1 of scte cute 2 , part A

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included ir
Schedule 3: (a) It has been produced, stockpiled or used as a chemical weapon (b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that (c) It poses a risk to the object and purpose of this Convention by virtue of its importance in the production of one or more chemicals listed in Schedule 1 or (d) It may be produced in large commercial quantities for purposes not
prohibited under this Convention.

How are chemicals organized in the Schedules?

How many actual chemicals are listed in the Schedules?

OPCW

How many actual chemicals are listed in the Schedules?

thousands $\stackrel{c}{C}$ infinity plus 1 with the additions
 른 8 infinitv millions infinite
 to infinity and beyond
 150 possible millions infinity - 3 hundreds

914
OPCW

How Many Actual Chemicals are in the Schedules?

```
SChedules of CHEMicals
    The following Schecules list toxic chemicals and their precursors. For the purpose of
    of verifiction mesures acording to the provision of the Verifatioplication
    Of vericicaion measures according to the provisions of the Verificaion Annex 
    Whenever reference is made to groups of dillyylated chemicals, followed by a list of
    allyy groups in parentheses, all chemicals possble by all possible combinations of
    *)
    chedule 2, part A, i, subjeect to special tiresholds for declaration and verification, as
    \mathrm{ pecified in Part VII of the Verification Ammex.)}
Schedule 1
A. Toxic chemical.再
(1) O-Alkyl (SC \(C_{10}\) incl. cycloalkyl) alkyl (Me, Et, n -Pt or i -PT)-phosphonofluoridates
e.g. Sain:
Soman: \(\begin{aligned} & \text { O-Isopropyl methylphosphonofluoridate } \\ & 0 \text {-Pinacoly l methylphosphonofluondate }\end{aligned} \quad\left(\begin{array}{l}(107-44-8) \\ (96-640)\end{array}\right.\)
(2) O-Allyl ( \(\mathrm{SC}_{10}\). incl. cycloallyyl) N.N.diallyyl
(Me, Et, n-PT or \(i\) i-T) phospoashoramidocyanidates
e.g. Tabun: O-Etryl \(N N\) N-dimethyl
(3) O -Alkyl ( H or \(\mathrm{C}_{1} 10\) incl cycloalkyl) \(\mathrm{S}-2\)-dialky Me, Et, n-Pr- or i-Pr)-aminoethyl alhyl Ie, \(\mathrm{Et}, \mathrm{n}\)-PT or 1 -PT) phosphonothiolates and
coresponding allylyted or protonated salts
e.g. VX: \(\quad \begin{aligned} & \text { O-Ethyl } 1 \text { S-2-diisopropylaminoethyl } \\ & \text { methyl phosphonothiolate }\end{aligned}\) (50782-69-9)
(4) Sulfiu mustards:
2-Chloroethylchloromethylsulfide Mustard gas Bis(2-chloroethyl) sulfide Bis(2-chloreothylthiomethane Sescuumustard. 1,2 -Bisis \((2\)-chloroethylthio)ethane
```



``` B-Mustard: Bis(2-chloroeethylthioethyl)ether
```

```
(5625-760-5)
```

```
(5625-760-5)
```



```
(\begin{array}{l}{(3653-36-8)}\\{(63905-2)}\end{array}
```

($$
\begin{array}{l}{(3653-36-8)}\\{(63905-2)}\end{array}
$$
M
M
(142868-94-8)
(142868-94-8)
(63918-89-8)

```
(63918-89-8)
```

${ }^{51} \quad$ Schedries of Cbemicicls

ORGANISATION FOR THE
PROHIBITION OF CHEMICAL WEAPONS

(5) Lewistes:

Nitrogen mustards:
HN1: Bis(2-chloroethyl)ethylamine
HN2: Bis 2 -chloroethyl)methylamine HN3: Tis 2 -chloroetifyl)
(7) Saxitoxin

Ricin
Precursors:
(9) $\mathrm{Alkyl}(\mathrm{Me}, \mathrm{Et}, \mathrm{n}$-Pt or i-PT) phosphonyldifuonides
e.g. DF: Methylphosphonyldifluoride
(10) O -Alkyl (H or $\leq \mathrm{C}_{10}$. incl. cycloalkyl) O-2-dialkyl
 Me, Et n-Pr or i.Pr) phosphonites and
corresponding allylated or protonated salts e.g. QL: O-Ethyl O-2-dissopropylaminoethyl methyphosphonte
(11) Cllorosarin: O-Isopropyl methylphosphonochloridate
(12) Chlorosoman: O-Pinacolyl methylphosphonochloridate
$(541-25-3)$
$(40334-69-8)$
$(4034-70-1)$ $(403344-69-8)$
$(4033-70-1)$ (538-07-8) $(53-07-7)$
$(551-25-2)$
$(55-7-1)$ $(555-77-1)$
$(35523-89-8)$ (9009-86-3)

(676-99-3)

(57856-11-8) (1445-76-7)
(7040-57-5)

Schedule 3

Guidelines for Schedule 3
郎 ard produced, stockpiled or used as a chemical weapon
(b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethhl or incapacitating toxicity as well as other properties that might enable itto be used as a chemical weapon; Convention by virtue of its (c) It poses a risk to the object and purpose of this Convention by virtue of its
importance in the production of one or more chemicals listed in Schedule 1 or Schedule 2, part B_{j}
(d) It may be produced in large commercial quantities for purposes not
prohibited under this Convention.
\qquad

Schedule 2

A. Toxic chemicals
(1) Amiton: OO-Diefhyl S-[2-(diethylamino)ethyl]

$$
\begin{aligned}
& \text { phosphorothinate } \\
& \text { and coresponding allylated or protonated salts }
\end{aligned}
$$

PFIB: 1,1,3,3,3-Pentafluoro-2-(tifluoromethyl)-1-propene (382-21-8)
(3) BZ: 3-Quimuclidinyl benzilate (${ }^{\text {(})}$
B. Precursors:
4) Chemicals, except for those listed in Schededue 1 , one methyl ethyl or propyl (normal or iso) group
but not further carion toms,
but not fuurther carbon atoms,
e.g. Metylphosphonyl did

Exenption: $\begin{aligned} & \text { Fonofos: } 0 \text { O-Ethyl } \mathrm{S} \text {-phenyl } \\ & \text { ethylphosphononotiolothionate }\end{aligned}$
(6) Dialkyl $(\mathrm{Me}$, Et n -Pr or i-Pt) N.N-diallyl
(7) Arsenic trichloride
(8) 2,2-Diphenyl-2-hydroxyacetic acid
(9) Quumuclidin-3-01
(10) N,N-Diallyl $\begin{aligned} & \text { Me. Et, } \mathrm{n} \text {-Pr or } i \text {-PT) aminoethyl-2-chlorides } \\ & \text { and corresponding protonated salts }\end{aligned}$
(11) N.N-Diallyl $($ Me, Et, n -Pr or i-PT) aminoethane-2-ols
and corresponding protonated salts

N.N-Diethylaminoethanol
and coresponding protonated salts
(13) Thiodiglycol: Bis(2-hydroxyethy) sulfide
(14) Pinacolyl alcohol: 3,3-Dimethylbutan-2-ol

Schedule 3

A. Toxic chemical

(1)	Phosgene: Carbonyl dichloride	(75.44-5)
(2)	Cyanogen chloride	(506-77-4)
(3)	Hydrogen cyanide	(74-90-8)
(4)	Chloropicinis Trichloronitromethane	(76-06-2)
B.	Precussors:	
(5)	Phosphorus oxychlonide	(10025-87-3)
(6)	Phosphorus trichloride	(7719-12-2)
(7)	Phosphorus pentachloride	(10026-13-8)
(8)	Trimethyl phosphite	(121-45-9)
(9)	Triethyl phosphite	(122-52-1)
(10)	Dimethyl phosphite	(868-85-9)
(11)	Diethyl phosphite	(762-04-9)
(12)	Sulfur monochloride	(10025-67-9)
(13)	Sulfiu dichloride	(10545-99-0)
(14)	Thionyl chlonide	(7719-09-7)
(15)	Etuyldiethanolamine	(139-87-7)
(16)	Methyldiethanolamine	(105-59-9)
(17)	Triethanolamine	(102-71-6)

How Many Actual Chemicals are in the Schedules?

B. SChediles of chemicals

The following Schedules list toxic chemicals and their precursors. For the purpose of
implementing this Convention, theses Schedulles identify chemicals for the application of verification measures according to the provisions of the Verification Ammex of verification maxasues according to the provisions of the Verification Amnex
Pursuant to Arricle II, subparagyaph 1 (a), these Schedules do not constitute a efinition of chemical weapo
Whenever reference is made to groups of diallylyated chemicals, followed by a list of allyylyroups in ppeentheses, all chemicals posssble by bull possible combinations of
allyl groups sisted in the parentheses are considered as listed in the respecive Shyl groups listed in the parentheseses are considered as listed in the respecetive Schedule 2 , part A, is subjeect to special tiresholds for declaration and verification, as specified in Part (II of the Verification Annee)
Schedule 1
(CAS registy $\begin{gathered}\text { number) }\end{gathered}$
descriptions/formulas

${ }_{(96-640)}^{(1074.8)}$

O-Alkyl (C_{10}, incl. cycloallyly) N N-dalkhyl (Me, Et, n-Pt or i-Pt) phosphoramidocyanidates e.g. Tabur: $\begin{aligned} & \text { O-Ethyl N.N-dimethyl } \\ & \text { phosphoramidocyanidate }\end{aligned}$
(3) O -Alkyl H or $\mathrm{C} \mathrm{C}_{10}$ incl cycloallyly S -2-dially Me, Et, n-Pror i-Pr)-aminoethyl alhyl
 coresponding allylated or protonated salts e.g. VX: $\begin{aligned} & \text { O-Ethyl S-2-diisopropylaminoethyl } \\ & \text { methyl phosphonothiolate }\end{aligned}$
(4) Sulfiu mustards.
-Chloroethylchloromethylsulfide Mustard gas Bis (2-chloreethyl) sufide
Bis 2 -chloreethylthio methane Bis(2-chloroethylthio)methane Sesquimustard. 1,2 -Bis $(2$-chloreethylthio)ethane
 1,4 Bis $($-chloroceethylyivio)-n-n-rotanene 1.5-Bis $(2$-chloroethylylivo)-n-pentane
Bis $(2$-clocoethylthiomethy $)$ ehter O-Mustard: Bis(2 -chloroeethylthioethyl) ether

Schedule 2

A. Toxic chemicals.

Precursors:
(5) Lewisites

(6) Nitrogen mustard.

HN1: Bis(2-chloroethyl)ethylamine
HN2: Bis 2 -chloroethyl)methylamine

(7) Saxitoxin
(8) Ricin

n-Pr or i-Pt) phosphonyldifluonic

e.g. DF: Methylphosphonyldifluoride
(10) 0 -Allyl (Hor $\leq \mathrm{C}_{10}$. incl. cycloallyl) 0 -2-dially Me, Et, n-PP or i-PT)-aminoethyl allyl Me, Et n-Pr or i.Pr) phosphonites and
corresponding allylated or protonated salts
eg. QL: O-Ethyl O-2-dissopropylaminoethyl methyphosphonite
(11) Cllorosain O-Isopropyl methylphosphonochlonidate
(12) Chlorosoman: O-Pinacolyl methylphosphonochloridate

(4512.53) (403.69.8)

(38802, $(51-75-2)$
$(55-77-1)$
(7040-57.5)

All the listed specific

chemicals have a Chemical Abstract Chemical Abstracts Service (CAS)
Registry Number

(1) Amiton: OO-Diefhyl S -[2-(diethylamino)ethyl] ${ }^{\text {and }}$ corresponding allylated or protonated salts PFIB: 1,1,3,3-3-Pentafluoro-2-(trifluoromethyl)-1-propene
4) Chemicals, except for those listed in Schededue 1 , containing a phosphonsus atom to which is bonded
one methyl ethyl or propyl (nomal or iso) group
but not futher cimon but not fuither carbon atoms,
e.g. Methylphosphonyl dichloride

Exenption: $\begin{aligned} & \text { Fonofos: } 0 \text { O-Ethyl } \mathrm{S} \text {-phenyl } \\ & \text { ethylphosphononotiolothionate }\end{aligned}$
(8) 2,2-Diphenyl-2-hydroxyacetic acid
(9) Quunuclidin-3-ol
and corresponding protonated salts
Exenptions: N.N-Dimethylaminoethanol

[^1]
There is an infinte (indeterminate)

 number of Scheduied Cheincals (with three e emptions infinity minus threc")
To Make Sense of all of this Requires a Discussion of Chemistry (Atoms, Molecules and Math!)

What do Scheduled Chemicals Look Like?

Schedule 1

Guidelines for Schedule 1

The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:
(a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article 11 ;
(b) It poses otherwise a high risk to the object and purpose of this Convention by virtue of its high potential for use in activities prohibited under this (i) It possesses a chemicals listed in Schedule 1, and has, or can be expected to have chemicals listed in Sch tompsesses such leth properties that would enable it toxitity as well as other It may be used as a precursor in the final single technological stage of production of a toxic chemical listed in Schedule 1, regardless of whether this stage takes place in facilities, in munitions or elsewhere;
(c) It has little or no use for purposes not prohibited under this Convention.

ORGANISATION FOR THE
PROHIBITION OF CHEMICAL WEAPONS
Working Together for a World Free of Chemical Weapons

Schedule 2

Guidelines for Schedule 2
The following criteria shall be taken into account in considering whether a toxic chemical not listed in Schedule 1 or a precursor to a Schedule 1 chemical or to a chemical listed in Schedule 2 , part A, should be included in Schedule 2 :
(a) It poses a significant risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that could enable it to be used as a chemical weapon;
(b) It may be used as a precursor in one of the chemical reactions at the final stage of formation of a chemical listed in Schedule 1 or Schedule 2, part A;
(c) It poses a significant risk to the object and purpose of this Convention by virtue of its importance in the production of a chemical listed in Schedule 1 or (d) It is not produced in under this Convention.

$$
\text { Schedule } 2 \text { Part A, Toxic Chemicals }
$$

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:
(a) It has been produced, stockpiled or used as a chemical weapon;
(b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that
mithes a ris to
(c) It poses a risk to the importance in the production of one or more chemicals listed in Schedule 1 or Schedule 2, part B;
(d) It may be produced in large commercial quantities for purposes not prohibited under this Convention.

 Scheduled chemicals. including those in schedules 1 and 2 , can have scientically and economically
imporant uses. This chart captures the number of yearly scientific publications that reter to them.

What do Scheduled Chemicals Look Like?

What do Scheduled Chemicals Look Like?

Recognizing How a Chemical "Behaves" is all About the Atoms!

Recognizing How a Chemical "Behaves" is all About the Atoms!

Recognizing How a Chemical "Behaves" is all About the Atoms!

Reason \#17483

When Niels Bohr w
the Carlsberg bi
house. That house was right next door to the brewery and had unlimited free beer on tap.
(electron cloud model)

THE PERIODIC TABLE OF ELEMENTS

				Symbol Ke \qquad	ey											$\mathrm{c}_{\substack{\text { num } \\ \text { nems }}}$
$\underbrace{3} \mathrm{Lin}$	Be										$\underbrace{}_{\substack { \text { a } \\ \begin{subarray}{c}{\text { nem } \\ \text { nem }{ \text { a } \\ \begin{subarray} { c } { \text { nem } \\ \text { nem } } }\end{subarray}}$		N ${ }_{\text {Numam }}$	$\mathrm{O}_{\substack{\text { mamm } \\ \text { mem }}}$	F	
${ }_{\substack{11}}^{\text {"ma }}$	${ }^{12} \mathrm{Mg}$												P	$\underset{\substack{\text { sum } \\ \text { nucs }}}{ }$	Cl	
${ }_{\substack { 19 \\ \begin{subarray}{c}{19{ 1 9 \\ \begin{subarray} { c } { 1 9 } } \\{\text { numem }} \\{\text { nuem }}\end{subarray}}$	${ }^{20} \mathrm{Ca}$ unum	Sc	Tim	$\int^{25} \mathrm{~V}^{\text {mumam }}$		Fer	${ }_{\substack { 7 \\ \begin{subarray}{c}{\text { cumar } \\ \text { nusin }{ 7 \\ \begin{subarray} { c } { \text { cumar } \\ \text { nusin } } } \\ {\hline}\end{subarray}}$		$\mathrm{Cl}_{\substack{\text { cuma } \\ \text { wise }}}$	$\mathrm{Ca}_{\substack{\text { and } \\ \text { ama }}}$	Ga	${ }_{\text {gex }}$	$\mathrm{As}_{\substack{\text { mam } \\ \text { nuad }}}$	Se	${ }_{\substack{\text { Bum } \\ \text { meam }}}$	
\%		$\underbrace{}_{\substack{\text { mamem } \\ \text { meam }}}$		${ }^{12}{ }^{12}$							In	$\mathrm{Sn}_{\substack{\text { mim } \\ \text { mim }}}$	$\mathrm{Sb}^{\text {unumb }}$	Ter	I	(iner
	Ba Bam	E57-71	${ }_{\substack{2 \\ \text { mumat } \\ \text { mame }}}$	${ }^{\text {130 }}$				$\mathrm{Pr}_{\substack{\text { mamu } \\ \text { mamen }}}$	$\overline{\mathrm{A}_{\mathrm{wu}} \mathrm{mu}^{4}}$		$\mathrm{Tl}_{\substack{\text { maum } \\ \text { mamem }}}$	$\mathrm{Pb}_{\substack{\text { umb } \\ \text { unim }}}$	$\mathrm{Bi}_{\substack{\text { numb } \\ \text { nemem }}}$	Po		
${ }^{27} \mathrm{Fr}$		E89-103	${ }^{\text {cosf }}$	0				Ds ${ }_{\text {Damum }}$		${ }^{2}$	NTh	${ }_{\substack{4 \\ \text { nemum } \\ \text { nemom }}}$	Mas	${ }^{\text {Luv }}$	Ts	${ }^{\mathrm{Og}}$

La	Ce	crem	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tmime	Yb	Lu
	Th	Pa	U		${ }_{\substack{\text { numu } \\ \text { nutase } \\ \text { nex }}}$		${ }_{\substack{\text { cmam } \\ \text { demos }}}$	Bk	Cf	ES		${ }_{\text {Mat }}$	Nout	r

THE PERIODIC TABLE OF ELEMENTS

Atoms found in chemical weapon agents

Additional atoms (halogens) that might be found in Schedule 2B.05 chemicals

THE PERIODIC TABLE OF ELEMENTS

Groups of elements

	Groups of elements
¿े	
\square	

Atoms found in chemical weapon agents

Schedule 2B.04: All atoms are theoretically possible! (" X " can be anything except Carbon)
Chemicals, except for those listed in Schedule 1, containing a phosphorus atom to which is bonded one methyl, ethyl or propyl (normal or iso) group but not further carbon atoms

An indeterminate number of possibilities...
Additional atoms (halogens) that might be found in Schedule 2B.05 chemicals

Chemicals are Defined by the Types of Atoms and Bonds FUNCTIONAL GROUPS IN ORGANIC CHEMISTRY
FUNCTIONAL GROUPS ARE GROUPS OF ATOMS IN ORGANIC MOLECULES THAT ARE RESPONSIBLE FOR THE CHARACTERISTIC CHEMICAL REACTIONS OF THOSE MOLECULES. IN THE GENERAL FORMULAE SHOWN BELOW FOR EACH FUNCTIONAL GROUP, ' R ' REPRESENTS THE REST OF THE MOLECULE, AND ' X ' REPRESENTS ANY HALOGEN ATOM.

- hrorocarabons smplexygen hetreoatomics halogen neteroatomics carbonvcompounos nitrogen-based surfur-ased aromatic

ALKANE Naming: -ane e.g. ethane

ALDEHYDE
Naming:-al
e.g. ethanal

AMINE
Naming:-amine
e.g. ethanamine

ALKENE Naming: -ene e.g. ethene

NITRILE Naming:-nitrile e.g. ethanenitrile

ALKYNE Naming: -yne e.g. ethyne

CARBOXYLIC ACID Naming: -oic acid e.g. ethanoic acid

IMINE Naming:-imine
e.g. ethanimine

ALCOHOL Naming:-ol e.g. ethanol

ACID ANHYDRIDE Naming:-oic anhydride e.g. ethanoic anhydride

ISOCYANATE
Naming: -yl isocyanate
e.g. ethyl isocyanate

ETHER
Naming: -oxy -ane e.g. methoxyethane

AZO COMPOUND Naming: azo-
e.g. azoethane

EPOXIDE
Naming: -ene oxide e.g. ethene oxide

AMIDE
Naming:-amide e.g. ethanamide

THIOL
Naming: -thiol
e.g. methanethiol

HALOALKANE Naming: haloe.g. chloroethane

ARENE Naming:-yl benzene e.g. ethyl benzene© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Chemicals are Defined hutb_ـof Atoms and Bonds

F| NOTICe mples listed in the Schedules

 (Possible to hav ORED
HYDROCARBONS \longrightarrow SIMPLE OXYGEN HETEROATOMICS

ALKANE Naming: -ane e.g. ethane

ALDEHYDE
Naming: -al e.g. ethanal

AMINE
Naming:-amine
e.g. ethanamine

ALKENE Naming: -ene e.g. ethene

NITRILE Naming:-nitrile e.g. ethanenitrile

ALKYNE Naming: -yne e.g. ethyne

CARBOXYLIC ACID Naming: -oic acid e.g. ethanoic acid

IMINE Naming:-imine
e.g. ethanimine

ALCOHOL Naming:-ol e.g. ethanol

ACID ANHYDRIDE Naming: -oic anhydride e.g. ethanoic anhydride

ISOCYANATE Naming: -yl isocyanate e.g. ethyl isocyanate

ETHER Naming:-oxy -ane e.g. methoxyethane

AZO COMPOUND Naming: azo-
e.g. azoethane

EPOXIDE
Naming:-ene oxide e.g. ethene oxide

AMIDE
Naming:-amide e.g. ethanamide

THIOL
Naming: -thiol
e.g. methanethiol

HALOALKANE Naming: haloe.g. chloroethane

ARENE Naming:-yl benzene e.g. ethyl benzene© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Chemical Behavior is Dictated by the Types of Atoms and Bonds

ORGANIC FUNCTIONAL GROUP INTERCONVERSIONS

What do Scheduled Chemicals Look Like?

Visualising and Reading Molecular Structures

Colour scheme of
OPCW your model kit

In the Structures of Relevance to the Annex on Chemicals:

Carbon atoms (C) have four bonds
2 If less than four bonds are shown in shorthand, the missing bonds are always C to H
. Chlorine and Fluorine atoms (Cl and F) have one bond
> Hydrogen atoms (H) have one bond
$\mathrm{N} \equiv \mathrm{C}-\mathrm{H}$

Nitrogen atoms (N) have three or four bonds
"salt form"

- Oxygen atoms (O) have two bonds
> Phosphorus and Arsenic atoms (P and As) can have three, four, five or six bonds
- In the form of a nerve agent P has five bonds - three single bonds and one double bond
- Sulfur (S) can have two, four or six bonds

Models

Representation of chemical structures using plastic models. Each "ball" represents an atom of a chemical elements identified by colour. The atoms are linked by single (in grey) or double (in white) bonds.

Translation

Graphical representation. These pictures translate the colour of the atoms into the chemical element associated to it, and illustrate the connection between the atoms. This is an intermediate representation to the "shorthand "used by chemists.

"Shorthand" structures

This is a format often used by chemists. It allows bonds between carbon atoms (C) to be shown as connected lines: C atoms that are located at each point where a line connects to other lines or where a line terminates. Additionally, bonds between C and H are not shown for easier visualisation of the structure. Only C-H bonds are hidden, all other bonds are shown.

Sarin

Nitrogen mustard (HN-3)

Visualising and Reading Molecular Structures

The Problem with Lazy...

The same or different?

OPCW

The Problem with Lazy...

The same!

Both are C10 with identical connectivity between atoms

- Molecules are not "rigid" and can exist and be illustrated in a variety of configurations!

OPCW

SCIFICF FTH गानLDतामतS

Tuesday 12 March 2019 Ooms Room 13:30-14:45 Tight Inmah Available at 13:00
acid and beyond

A lunch time mission to boldly go where no delegation has gone before...

Understanding Scheduled Chemicals

- Example of a Specific Chemical: Schedule 3B. 14

Understanding Scheduled Chemicals

- Example of a Group of Related Chemicals: Schedule 1A. 04

Sulfur mustards:

2-Chloroethylchloromethylsulfide
Mustard gas: Bis(2-chloroethyl)sulfices
Bis(2-chloroethylthio)methane
Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane
1,3-Bis(2-chloroethylthio)-n-propane
1,4-Bis(2-chloroethylthio)-n-butane
1,5-Bis(2-chloroethylthio)-n-pentane
Bis(2-chloroethylthiomethyl)ether
O-Mustard: Bis(2-chloroethylthioethyl)ether
(2625-76-5)
(505-60-2) (63869-13-6)
(63905-10-2) (142868-93-7) (142868-94-8)
(63918-89-8)

Understanding Scheduled Chemicals

- Example of a Group of Related Chemicals: Schedule 1A. 04

Sulfur mustards:
2-Chloroethylchloromethylsulfide
Vuistard gas: Bis(2-chloroethyl)sulfide Bis(2-chloroethylthio)methane
Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane
1,3-Bis(2-chloroethylthio)-n-propane
1,4-Bis(2-chloroethylthio)-n-butane
1,5-Bis(2-chloroethylthio)-n-pentane
Bis(2-chloroethylthiomethyl)ether
O-Mustard: Bis(2-chloroethylthioethyl)ether
(2625-76-5)
(505-60-2) (63869-13-6)
(63905-10-2)
(142868-93-7)
(142868-94-8)
(63918-90-1)
(63918-89-8)

Understanding Scheduled Chemicals

- Example of a Group of Related Chemicals: Schedule 1A. 04

Sulfur mustards:	
2-Chloroethylchloromethylsulfide	$(2625-76-5)$
Chistard gas: Bis(2-chloroethyl)sulfices	$(505-60-2)$
Bis(2-chloroethylthio)methane	$(35693-13-6)$
Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane	$(63905-10-2)$
1,3-Bis(2-chloroethyllhio)-n-propane	$(142868-93-7)$
1,4-Bis(2-chloroethyllhio)-n-butane	$(142868-94-8)$
1,5-Bis(2-chloroethylthio)-n-pentane	$(63918-90-1)$
Bis(2-chloroethylthiomethyl)ether	$(63918-89-8)$
O-Mustard: Bis(2-chloroethylthioethyl)ether	

Understanding Scheduled Chemicals

- Example of a Group of Related Chemicals: Schedule 1A. 04

Sulfur mustards:	
2-Chloroethylchloromethylsulfide	$(2625-76-5)$
Chistard gas: Bis(2-chloroethyl)sulfices	$(505-60-2)$
Bis(2-chloroethylthio)methane	$(35693-13-6)$
Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane	$(63905-10-2)$
1,3-Bis(2-chloroethyllhio)-n-propane	$(142868-93-7)$
1,4-Bis(2-chloroethyllhio)-n-butane	$(142868-94-8)$
1,5-Bis(2-chloroethylthio)-n-pentane	$(63918-90-1)$
Bis(2-chloroethylthiomethyl)ether	$(63918-89-8)$
O-Mustard: Bis(2-chloroethylthioethyl)ether	

Understanding Scheduled Chemicals

- Example of a Group of Related Chemicals: Schedule 1A. 04

Sulfur mustards:	
2-Chloroethylchloromethylsulfide	$(2625-76-5)$
Chistard gas: Bis(2-chloroethyl)sulfices	$(505-60-2)$
Bis(2-chloroethylthio)methane	$(35693-13-6)$
Sesquimustard: 1,2-Bis(2-chloroethylthio)ethane	$(63905-10-2)$
1,3-Bis(2-chloroethyllhio)-n-propane	$(142868-93-7)$
1,4-Bis(2-chloroethyllhio)-n-butane	$(142868-94-8)$
1,5-Bis(2-chloroethylthio)-n-pentane	$(63918-90-1)$
Bis(2-chloroethylthiomethyl)ether	$(63918-89-8)$
O-Mustard: Bis(2-chloroethylthioethyl)ether	

What About Families?

Universe (und
Expand your chemical mocule!

"O-Alkyl $1 \leq \mathrm{ClO}$, incl. cycloalkyl
Instructions:

nd build a member of the " O -Alkyl chemicals.
and
ononofluon date"

 What is an n-pr or i-pr)-ph. Et - n.pr or i-pr)-phosphonofluoridate" is a
(Me. Et, What is, n-Pr
(Me, Et, Molky) alky (MMe. Et,

What is an " 0 -Alkyl phosphonofluoridate"?

What is an O-alkyl (=/< C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phophonoflouridate"?

schedule 1901 warfare agent

"O-Alkyl ($\leq \mathrm{C} 10$, incl. cycloalkvl) alkyl (Me, Et, n-Pr or i-Pl ©hosphonofluoridate"
C (alkyl group \#1)
B (alkyl group \#2)
A
A: "phosphonofluoridate"

B: the "carbon atom" is part of an alkyl group... which is Me, Et, n-Pr or i-Pr

C: There is one other alkyl group : " \leq C10, incl. cycloalkyl" attached to the "0" with the single bond...
(Me, Et, n-Pr, or i-Pr)

There is an Easier Way...

$R=$ "the rest of the molecule" (a "moiety")
$\mathrm{Me}, \mathrm{Et}, \mathrm{i}-\mathrm{Pr}, \mathrm{n}-\mathrm{Pr}$ a what to do?
Do y

"Alkyl" is a Substructure of an "Alkane"

- An alkane is a molecule that is composed of carbon (C) and hydrogen (H) atoms
- Each carbon atom has four single bonds - to four other atoms (can be carbon or hydrogen)
- Each hydrogen atom has one single bond to a carbon atom
- Alkanes are a type of hydrocarbon
part ix (Verification Annex)
ACTIVITIES NOT PROHIBITED UNDER THIS CONVENTION
IN ACCORDANCE WITH ARTICLE VI
REGIME FOR OTHER CHEMICAL PRODUCTION FACILITIES
A. DECLARATIONS

List of other chemical production facilities

1. The initial declaration to be provided by each State Party pursuant to Article VI, paragraph 7, shall include a list of all plant sites that:
(a) Produced by synthesis during the previous calendar year more than 200 tonnes of unscheduled discrete organic chemicals; or
(b) Comprise one or more plants which produced by synthesis during the previous calendar year more than 30 tonnes of an unscheduled discrete organic chemical containing the elements phosphorus, sulfur or fluorine (hereinafter referred to as "PSF-plants" and "PSF-chemical").
2. The list of other chemical production facilities to be submitted pursuant to paragraph 1 shall not include plant sites that exclusively produced explosives or hydrocarbons.

"Alkyl" is a Substructure of an "Alkane"

- An alkane is a molecule that is composed of carbon (C) and hydrogen (H) atoms
- Each carbon atom has four single bonds - to four other atoms (can be carbon or hydrogen)
- Each hydrogen atom has one single bond to a carbon atom
- Alkanes are a type of hydrocarbon
part ix (Verification Annex)
ACTIVITIES NOT PROHIBITED UNDER THIS CONVENTION
IN ACCORDANCE WITH ARTICLE VI
REGIME FOR OTHER CHEMICAL PRODUCTION FACILITH
A. DECLARATIONS
mex 1 carbon alkane Please build 1 can required)
(no declaration requ...nnam

OPCW

From C1 to C3...

- Does your C1 Alkane look like this?

Methane, CH_{4}

- Now build a C2 alkane

Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$

- And finally, build a C3 alkane

Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$

OPCW

From C1 to C3...

- Does your C1 Alkane look like this?

Methane, CH_{4}

- Now build a C2 alkane

Ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$

Did anyone build one of these?

- And finally, build a C3 alkane

Propane, $\mathrm{C}_{3} \mathrm{H}_{8}$

Cyclopropane $\mathrm{C}_{3} \mathrm{H}_{6}$

The smallest "cycloalkane"

Cycloalkanes

"Cubane"

"Strained Bonds"

Still ways to allows for more optimal strain larger bonding geometry cycloalkanes!

Cycloalkanes

CAS Registry Number: 13172-14-0
 Formula: $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{FO}_{2} \mathrm{P}$

CA Index Name: Phosphonofluoridic acid, methyl-, bicyclo[2.2.0]hex-2-yl ester (7CI,8CI)

```
Other Names
Bicyclo[2.2.0]hexan-2-ol, methylphosphonofluoridate
Number of References
~1
Document Types
Journal
```


Properties

```
Predicted
Commercial Sources
Not Available
```


All connections that meet the molecules may be unstable)
All connections that strained molecules nay
(and some s.

OPCW

From "Alkanes" to "Alkyls"

- Remove one hydrogen atom (and the short bond to which is attached)
- Attach the "alkyl group" to another molecular structure through one of the free bonds in your kit!

What About Propane?

OPCW

Significance of Carbon Atoms: Additional Molecular Possibilities

From C1 to C4:
10 Alkanes provide 15 possible alkyl groups
All possibilities allowed for R^{1} from C1 to C10!

Are these " 0 - Alkyl ($\leq \mathrm{C10}$, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridates"?

$R^{1}=R^{2}=\operatorname{Me}(C 1)$ Yes

(both are the same)

Your Turn to Explore "Chemical Space"

How Many Ways Can the Carbon and Hydrogen Atoms be Arranged?

Carbon Atoms	Acyclic Isomers	Attachment Possibilities for R-X	Isomers with cycles	Attachment Possibilities for R-X	C1 to Cn Possibilities
$\mathbf{1}$	1	1	0	0	$\mathbf{1}$
$\mathbf{2}$	1	1	0	0	$\mathbf{2}$
$\mathbf{3}$	1	2	1	1	$\mathbf{5}$
$\mathbf{4}$	2	4	4	7	$\mathbf{1 6}$
$\mathbf{5}$	3	8	10	39	$\mathbf{6 3}$
$\mathbf{6}$	5	17	26	84	$\mathbf{1 6 4}$
$\mathbf{7}$	9	39	71	374	$\mathbf{5 7 7}$
$\mathbf{8}$	18	89	$?$	$?$	>666
$\mathbf{9}$	35	211	$?$	$?$	$\mathbf{?}$
$\mathbf{1 0}$	75	507	$?$	$\mathbf{1 3 8 4}$	

For C8 to C10 cycloalkyls: a computational study is required to find the possibilities!

> (4 X 1384 =) 5536 Schedule 1A. 01 Parent Structures!

From C1 to Cn...

OPCW
"Parent Structures" are Far From the Whole Story...

- Molecules have 3-Dimensional Spatial Orientations

"Mirror images"

Cannot rotate and convert one for to the other!
"Parent Structures" are Far From the Whole Story...

OPCW

Stereoisomers Occur Whenever an Atom has Four Non-Equivalent Connections ("Chirality")

Mirror Images

Cannot rotate and convert one for to the other!

OPCW

Stereoisomers Occur Whenever an Atom has Four Non-Equivalent Connections ("Chirality") n in alkyl group

Every "chiral" center inal steroisomers

 generates additional steroisomerCannot rotate and convert one for to the other!

OPCW

From C1 to C10, >> 5536!
(estimate d'oes not reffect stereoisomers or C8-C10 cycloalkyls)

EXPANSION

Thousands Possible, How Many Are Actually Known?

A DIVISION OF THE AMERICAN CHEMICAL SOCIETY

- CAS Database: 472 1A. 01 chemical substances
- OPCW handbook on chemicals: 376 1A. 01 chemicals
- OCAD V21: 569 1A. 01 Mass Spectra

The Most Famous Member of the "O-Alkyl ($\leq \mathrm{C} 10$, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridate" Family?

The Most Famous Member of the
"O - Alkyl ($\leq \mathrm{C} 10$, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridate" Family?

The Most Famous Member of the
 "O - Alkyl (\leq C10, incl. cycloalkyl) alkyl (Me, Et, n-Pr or i-Pr)-phosphonofluoridate" Family?

Conference paper

Christopher M. Timperley*, Jonathan E. Forman*, Mohammad Abdollahi, Abdullah Saeed Al-Amri, Isel Pascual Alonso, Augustin Baulig, Veronica Borrett, Flerida A. Cariño, Christophe Curty, David Gonzalez, Zrinka Kovarik, Roberto Martínez-Ålvarez, Robert Mikulak, Nicia Maria Fusaro Mourāo, Ponnadurai Ramasami, Slawomir Neffe, Syed K. Raza, Valentin Rubaylo, Koji Takeuchi, Cheng Tang,
Ferruccio Trifirò, Francois Mauritz van Straten, Paula S. Vanninen, Volodymyr Zaitsev, Farhat Waqar, Mongia Saïd Zina, Stian Holen and Hope A. Weinstein
Advice from the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons on isotopically labelled chemicals and stereoisomers in relation to the Chemical Weapons Convention
https://dol.org/10.1515/pac-2018-0803
Article note: A special Issue contalning Invited papers on Innovative Technologies for Chemical Security, based on work done within the framework of the Chemical Weapons Corvention.
(12 $17253934 \cdot 3$

 - 15.1415999 .57 .3 a (Commonent 107-48)

- $2 \mathrm{H}_{2} \mathrm{O}$ Inhibition
created by Sofía Sola Sancho and Maria Hemme

Bindling Site
The AChE active site is buried deep within the enzyme. It contains three amino acid residues crucial for catalytic activity: serine 200, histidine 440 and glutamate 327. The nerve agent binds to serine 200.

Effects and Symptoms

Treatment
Atropine blocks the action of ACh at muscarinic receptors and treats SLUDGE.
Oximes such as 2-PAM (pralidoxime) can reactivate inhibited AChE, but only before the aging process.

$$
\text { ss. } 3)
$$ (Fig. 3, Step 3) Inhibition of AChE in muscarinic synapses (neuromuscular system) induces cholinergic crisis. Nicotinic synapses (central nervous system, e.g. brain) are also effected.

Symptoms include sweating, salivation, miosis (pinpoint pupils), paralysis, respiratory failure, seizures and eventually death.

Figure 4: Inhibition of AChE by Sarin and Treatment with Atropine and 2-PAM.

 opowonline
of the AChE surface

Toxicity of an organophosphorus nerve agent depends on the ability to access the AChE binding site. Size, shape and hydrophobicity of the nerve agent exerts an effect. As alkyl substituents increase in size and degrees of freedom, toxicity decreases.

The spatial orientation (shape) of the molecule also matters, as illustrated by toxicity differences across the four stereoisomers of Soman.

Broad Coverage Under a Schedule? What Does it Accomplish?

How Many 1A. 01 Chemicals can Inhibit Acetylcholinesterase?

OPCW

How Many 1A. 01 Chemical can Inhibit Acetylcholinesterase?

larger than sarin, cyclo \& branched alkyls similar toxicity C6/C1

Butyl-Sarin
$L_{50}=0.012 \mathbf{~ m g} / \mathrm{kg}$ (i.v. rabbit)*

larger than sarin,
Linear alkyl group lower toxicity C6/C1

C4/C1

Hexyl-Sarin
$L_{50}=0.145 \mathrm{mg} / \mathrm{kg}$
(i.v. rabbit)*

OPCW

Can You Accurately Define Cn?

"Toxic Portion" (toxic family)

$R \leq$ Cn overlaps
but does not. fully contain "Toxic Portion"

(toxic family)
$R \leq$ Cn overiaps but does not fully contain
"Toxic Portion"

All possible structures for $R=H / C 1$ to C_{∞}.

Can You Accurately Define Cn?

Do the Schedules Provide Guidance?

Scheduled Chemicals under the Chemical Weapons Convention (CWC)

Schedule 1

Guidelines for Schedule 1
The following criteria shall be taken into account in considering whether a toxic chemical or precursor should be included in Schedule 1:
(a) It has been developed, produced, stockpiled or used as a chemical weapon as defined in Article Il_{i}
(b) It poses otherwise a high risk to the object and purpose of this rand virtue of its high potential for use in activitit
Convention because one ormore
(i) It possesses
cast wide net - try to maxice (e.g. a
Guidelines for Schedule 2
The following criteria shall be taken chemical not listed in
chemica
the coverage
count in considering whether a toxic ursor to a Schedule 1 chemical or to a be included in Schedule 2:
t and purpose of this Convention because ating toxicity as well as other properties a 10 as a che nical weapon;
AKY virtue of its importance in the production of a chemical listed in Schedule 1 or Schedule 2, part $A_{\text {; }}$
(d) It is not produced in large commercial quantities for purposes not prohibited under this Convention.
Schedule 2 Part A, Toxic Chemicals

Schedule 2

Both approaches have their own merits and disadvantages

Schedule 3

Guidelines for Schedule 3

The following criteria shall be taken into account in considering whether a toxic chemical or precursor, not listed in other Schedules, should be included in Schedule 3:
(a) It has
(a) It has been produced, stockpiled or used as a chemical weapon;
(b) It poses otherwise a risk to the object and purpose of this Convention because it possesses such lethal or incapacitating toxicity as well as other properties that
It poses a risk to the object and purpose of this
importance in the production of one or more chemicals lision by virtue of it

(d) It may be prod
prohibited under this Convention
Schedule 3 Part A, Toxic Chemicals
i.

ORGANISATION FOR THE
PROHIBITION OF CHEMICAL WEAPONS
 are many

List individual toxic substances - yet there nore possible biolog,

 Scheduled chemicals. including those in schedules 1 and 2 , can have scientitically and economically
impootant uses. This chart coptures the number of yearly scientific publications that reter to them.

Other Families?

1A.02: O-Alkyl (ड C10, incl. cycloalkyl) N,N-dialkyl (Me, Et, n-Pr or i-Pr)phosphoramidocyanidates

$R^{1} \leq C_{10}$ alkyl, including cycloalkyl, $R^{2}, R^{3}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}, \mathrm{i}-\mathrm{Pr}$
"Phosphoro" not "Phosphono"
(no alkyl group connected to P atom)
"Dialkylamino" group
(phosphoramido)

	Me	Et	$n-\mathrm{Pr}$	i-Pr
Me	Me Me	Me Et	Duplicates of other Et asymmetric set	
Et	Et Me	Et Et		
$n-\mathrm{Pr}$	$\mathrm{n}-\mathrm{Pr} \mathrm{Me}$	n-Pr Et	$n-\operatorname{Pr} n-\operatorname{Pr}$	$n-\mathrm{Pr}$ i-Pr
i-Pr	i-Pr Me	i-Pr Et	$i-\mathrm{Pr} \mathrm{n}-\mathrm{Pr}$	i-Pr i-Pr

10 (dialkylamino) X (> 1384 C1 to C10)
$>13,840$ parent structures

Your Turn!

Fill in the blank:

Your Turn!

How Many Parent Structures?

10 dialkylamino possibilities

$$
R^{2}, R^{3}, R^{4}=\mathrm{Me}, E t, n-P r, i-P r
$$

10 (dialkylamino) X 4 X (> 1384 C1 to C10)
> 53,360 parent structures

And Just to Complicate Things, What Does Schedule 1A. 03 Actually Say?
groups and anions?
How many possible alkyl groups and anions? 1000? 10,000? 100,000?

If $1000,>110$ billion possibilities |kyl...)
If $10,000,>11010,000$ quadrillion br molecule)
If $100,000>110,0$.
0 -Alkyl (H or : If 10 , incl. cycloalkyl) S -2-dialkyl (Me, Et, n-Pr or $\mathrm{i}-\mathrm{Pr}$-aminoethyl alkyl (Me, Et, n-Pr or i-Pr) phosphonothiolates and corresponding alkylated or protonated salts.

How Many 1A. 03 Chemicals Are Actually Known?

A DIVISION OF THE AMERICAN CHEMICAL SOCIETY

- CAS Database: 161 chemical substances
- OPCW handbook on chemicals: 715 chemicals
- OCAD V21: 772 Mass Spectra

OPCW

Take the Quiz!

Downlond the Quiz

Downlond the Answer Key

Tesk your knowledge
of the Schedules of the Chemical Weapons Convention
with an ीugmented Reality Scherulus quiz!

Take the

Test Vour Chemical Weapons Convention Schedule 1 Knowledge

OPCW
Organisation for the Prohibition of Chemical Weapons

Why Does All of This Matter?

Technical issues require sound technical inputs

All of the nuances required to understand what Schedules and their content represent in terms of chemistry came up in the recent Article XV discussions and evaluations

Don't let the technical jargon be a hindrance!

- Ice-cream and prizes

Making Helpful Information More Accessible!

ORGANISATION FOR THE PROHIBITION OF CHEMICAL WEAPONS
"THE SCIENCE FOR DIPLOMATS" ANNEX ON CHEMICALS

A user friendly and scientifically annotated version of the Chemical Weapons Convention Annex on Chemicals

c. SChedules of chemicals

The following Schedules list toxic chemicals and their precursors. implementing this Convention, these Schedules identify chemical of verification measures according to the provisions of the V
Pursuant to Article II, subparagraph 1 (a), these Schedules do not co
Pursuant to Article III,
of chemical weapons.
Individual Schedules are defined by a general formula for a chem service (CAS) numbers are also included chemical structures and Service (CAS) numbers are also included. Some of the chemicals,
3D stucture in "augmented reality" that can be viewed by scann Augmented reality QR codes are identified by ' A).
Whenever reference is made to groups of dialkylated chemicals, fo Whenever reference is made to groups of dalkylated chemicals, fo
alkyl groups in parentheses, all chemicals possible by all possible cor
groups listed in the parentheses are considered as listed in the resp groups listed in the parentheses are considered as listed in the resp long as they are not explicitly exempted A chemical marked "*" 0 ,
A , is subject to special thresholds for declaration and verification, VII of the Verification Annex

Scientific Advisory Board Recommendations
Chemical Abstract Service (CAS) numbers should not solely be re chemicals covered by the schedules. Although relevant as aids verification, CAS numbers are not the only means to identify
determine whether a chemical is included in or excluded ffr

For further information see "Advice from the Scientific Advisory Board of

and

Schedule 1
A. Toxic chemicals
(1) O-Akyl ($\leq \mathrm{C}_{10}$, incl. cycloalkyl) alky ($\mathrm{Me}, \mathrm{Et}, \mathrm{n}$ - Pr or i-Pr)-phosphonofluoridates
$\mathrm{R}^{1} \leq \mathrm{C}_{10}$, including cycloalkyl, alkyl
$\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}, \mathrm{i}-\mathrm{Pt}$
e.g. Sarin: O-Isopropyl methylphosphonofluoridate

(2) O-Alkyl $\leq \mathrm{C}_{10}$, incl. cycloalkyl) N, N-dialkyl

eg. Tabun: O-Ethyl N, N-dimethyl phosphoramidocyanidate

Making Helpful Information More Accessible!
 tn

OPCW

Help us build a glossary!

soman
 nomenclature protonated salts cns-acting alkyl iso-propyl guanadine ethyl

Where do We Go from Here？

OPCW

organisation for the Prohibition of Chemical Weapons

Summary of the First Meeting of the
Scientific Advisory Board＇s Tempo－ Scientific Advisory Board＇s Tempo－ rary Working Group on Investigative Science and Technology （SAB－27／WP．I，dated 26 Fdrruary 2018）

Report of the Scientific Advisory Board at its Twenty－Seventh Session
（SAB－27／l，dated 23 Marb 2018）

Director－General＇s Response to the Re－
port of the Twenty－Seventh Session of the
Scientific Advisory Board （EC－88／DG．5，dated 9 May 2018）

Report of the Scientific Advisory Board on Developments in Science and Technology for
the Fourth Special Session of the Conference the Fourth Special Session of the Conference
of the States Parties to Review the Operation of the Chemical Weapons Convention
（RC－4／DG．1，dated 30 April 2018）

Response by the Director－General to the
report of the Scientific Advisory Board on Developments in Science and Technology for the Fourth Special Session of the Conferenc of the States Parties to Review the Operatio of the Chemical Weapons C

Response to the Director－General＇s Request Response to the Director－General
to the Scientific Advisory Board
to Provide Advice on New Types of Nerve Agents
（SAB－28／WP．1，datd 3 July 2018）

（rachion

Summary of the Second Meeting of the Scientific Advisory Board＇s Temporary Working Group on Investigative Science and Technology
（SAB－28／WP．2，dated 21 Jamary 2019）

Where do We Go from Here?

Look for Continued Technical Secretariat Engagement in 2019 as Well!

Science for Diplomats at EC-89

Suifability for Fieldwork: The Science and Technology of Physical Protection

Scientific Advisory Board

Science Communication and Engagement

 Phaweme ditarowe

 men dibl OFCK m

(a)

Science of the Chemical Weapons Comention Available from the OPCW.ors

ific Review for the Fourth Review Conf
of the Chemical Weapons Convention

Thank You for Joining In!

Periodic Table of States Parties to the Chemical Weapons Convention

$O P C W$

منظمة حظر الأشلحة الكيميائية
禁止化学武器组织
Organisation for the Prohibition of Chemical Weapons
Organisation pour l＇Interdiction des Armes Chimiques
Организация по запрещению химического оружия
Organización para la Prohibición de las Armas Químicas

[^0]: scheduled chemicals, including those in schedules 1 and 2 . con have scientifically and economicaly
 important uses. This chart captures the number of yearly scientific publications that reter to them.

[^1]: (14) Pinacolyl alcohol: 3,3-Dimethylbutan-2-ol

