Lessons from process chemical incidents and accidents

DR. M. SAM MANNAN, PE, CSP, DHC

Regents Professor and Director Holder of T. Michael O'Connor Chair I Mary Kay O'Connor Process Safety Center Artie McFerrin Department of Chemical Engineering Texas A&M University, College Station, TX

International Meeting on Chemical Safety and Security: Promoting Global Chemical Safety and Security Culture November 8-9th, 2012 Tarnów, Poland

A History of Disasters

- Bhopal, India, 1984
- Chernobyl, Ukraine, 1986
- Shell Oil Norco, Louisiana, 1988
- Piper Alpha, North Sea, 1988
- Exxon Valdez, Alaska, 1989
- Phillips 66, Texas, 1989
- Kader Toy Factory Fire, Thailand, 1993
- Enschede Fireworks disaster, 2000
- Toulouse, France, 2001
- BP Texas City, USA, 2005
- Buncefield, UK, 2005
- Caribbean Petroleum Corporation, Puerto Rico, 2009
- Kleen Energy Explosion, USA, 2010
- Deepwater Horizon, USA, 2010
- Fukushima Daiichi, Japan, 2011

Major Moments for Learning

- Bhopal Disaster 1984
- Toulouse, France 2009
- BP Texas City 2005
- Buncefield Terminal Fire 2005
- Deepwater Horizon 2005
- Fukushima Daiichi 2011

Overview of Selected Accidents

Bhopal, India – 1984

- MIC release resulted from the mixing of incompatible materials and the failure of several layers of protection.
- Over 2000 fatalities (estimate varies).
- Several of the failures/deficiencies blamed on budgeting.

BP Texas City, USA – 2005

- Vapor cloud explosion (VCE) resulting from improper start-up and over-filling of isomerization unit.
- 15 fatalities
- Disaster caused by: inadequate and obsolete process design, poor maintenance, improper temporary building siting, worker fatigue, etc.

Overview of Selected Major Recent Disasters

Deepwater Horizon Oil Spill – 2010

- Loss of well integrity in the final stages of drilling resulted in a fire, explosion, and oil spill.
- 11 fatalities, rig lost.
- BP failed to follow best practices and heed warning signs.
- Insufficient emergency response capabilities.

Buncefield Fire, UK – 2005

- Vapor cloud explosion caused by over filling of a gasoline storage tank and the resulting loss of containment.
- Automatic high level alarm and shutdown switch failed.
- Destroyed 20 large storage tanks

Overview of Selected Major Recent Disasters

Toulouse, France – 2001

- Explosion of "off-spec" Ammonium Nitrate (AN) in a warehouse
- 30 fatalities, 10000+ injuries, 27000+ houses damaged
- Most likely cause: incompatibility of AN with chlorinated compounds lead to decomposition and detonation of AN

Fukushima Daiichi NPP, Japan – 2011

- Tsunami flooded rooms emergency generators, causing power system damage and affecting seawater intake structures.
- Lack of cooling, 3 reactors went into meltdown, hydrogen accumulated, causing explosions and releasing radioactive material
- 20-km exclusion zone, thousands of people affected

Lessons Learned Applicable to Chemical Security

- Inherently Safer Design
- Process Hazard Analysis
- Facility Siting and Layout
- Leading Indicators and Warning Signs
- Layers of Protection Analysis (LOPA)
- Emergency Response and Planning
- Risk Communication
- Role of Academia

Inherently Safer Design (ISD)

8

Inherent – Permanent, inseparable

ELIMINATE REDUCE

rather than **CONTROL**

Hazard

Hazard

Safer **≠** Safe

Actual risk

Inherently Safer Design (ISD)

- Inherent Safety (IS) can help reduce/eliminate the hazard, thus the escalation of consequences.
- Reduction of hazards may make the facility less interesting as a target.
- Application of the four main strategies for IS:
 - Minimize *"What you don't have, can't leak"* Kletz, 1978
 - Substitute
 - Moderate
 - Simplify
- IS strategies do not necessarily remove the threat(s).
- Issue How to determine inherently safer alternative?

Process Hazard Analysis (PHA)

10

It is necessary to identify hazards in order to implement appropriate prevention and mitigation measures

- Safety: Prevent *release* of hazardous materials
- Security: Prevent <u>access</u> to hazardous materials
- Equivalent to PHA: <u>Security Vulnerability Analysis</u>

Security Risk = f[C, T, V, A]

- C = Consequence
- T = Threat
- V = Vulnerability
- A = Attractiveness

Facility Siting and Layout

- Minimize potential for domino effects or escalating consequences
 - Locate facilities away from communities
 - Need for better Land Use Planning (LUP)
 - Avoid the growth of communities in the surroundings of the facility

Leading Indicators and Warning Signs

Before incidents occur, there are usually warning signs

 Lack of knowledge management may impede the identification of serious problems

"what is unknown does not coincide with what is impossible" (Paltrinieri et al., 2012)

Layers of Protection Analysis (LOPA)

- Objective: Reduce vulnerability of facility by making it less attractive and increasing difficulty to attack.
- Multiple independent layers are needed.
- No layer of protection can be perfect.
- Watch out for common cause failures or single point failures
- Devices should not be considered "fail-safe" unless it can be proven.

Integrity, Reliability, Availability of IPLs

Risk can be reduced by reducing the likelihood or the consequences of an incident

- Inherent
- Passive
- Active
- Procedural
- A good safety program involves ALL strategies
- Layers must be inspected and maintained on a regular basis
- Layers must be able to operate upon demand.

Emergency Response Planning

15

 Plant personnel, local authorities and community should be prepared to respond to emergencies

- Need for coordinated response
- Prepare for inevitable occurrence of accidents (earthquakes, tsunamis) – known unknown events
- Train responders in non-technical skills
 - Decision making, task leadership, communication, teamwork
 - Manage high uncertainty and stressful situations

Emergency Response Planning

16

Crisis Management and response

- Clarify supervisory roles
 - Who is in charge?
- Ensure emergency power and utilities
- Communicate honestly and frequently with the media
 - Acknowledge unknowns and uncertainties

Risk Communication

Communicating information to the public

- Need to balance between "right-to-know" and "security issues"
- Revealing information has benefits and consequences
 Build credibility
 - × Make the facility of special value when times are tough
 - Terrorist can benefit from information released
- Need to educate society and risk communicators so that they have a more accurate perception of risk
- Public lack of awareness of hazards may escalate the consequences of the incident

Role of Academia

- Teach undergraduate and graduate students, and integrate engineering solutions in education and research curriculum
- Provide innovative and inherently safer solutions to industry problems

References

- List of Industrial Disasters. Wikipedia. http://en.wikipedia.org/wiki/Industrial_disasters
- Investigation Report: Refinery Explosion and Fire. BP Texas City, Texas, March 23 2005. US Chemical Safety Board. Report No. 2005-04-I-TX. March 2007
- Timeline of the Deepwater Horizon Oil Spill. Wikipedia. Avaialable at: http://en.wikipedia.org/wiki/Timeline_of_the_Deepwater_Horizon_oil_spill
- How Buncefield Fire Unfolded. BBC News. 13 July 2006. Available at: http://news.bbc.co.uk/2/hi/4525504.stm>.
- King. Mathew. What Happened At Chernobyl? Nuclear Fissionary. Available at: http://nuclearfissionary.com/2010/03/03/what-happened-at-chernobyl.
- Chernobyl Disaster. Wikipedia. Available at:<http://en.wikipedia.org/wiki/Chernobyl>
- Paltrinieri, N., et al., Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management. Risk Analysis, 2012. **32**(8): p. 1404-1419.
- Dechy, N., et al., *First lessons of the Toulouse ammonium nitrate disaster, 21st September 2001, AZF plant, France.* Journal of Hazardous Materials, 2004. **111**(1–3): p. 131-138.
- IAEA 2011. IAEA International Fact Finding Expert Mission of the Fukushima Dai-ichi NPP Accident Following the Great East Japan Earthquake and Tsunami. International Atomic Energy Agency.
- Kletz, T. (May 6 1978). What you don't have, can't leak. Chemistry and Industry,
- **287-292.**

Thank you

